Traffic Impact Study

DHL Facility Village of Ashville, Ohio

August 22, 2022
October 24, 2022
REVISED
December 5, 2022

Prepared for:

Poggemeyer Design Group, Inc. 101 Clinton Street Defiance, Ohio 43512

TRAFFIC IMPACT STUDY

DHL Facility

Village of Ashville, Ohio

August 22, 2022
October 24, 2022
REVISED
December 5, 2022

Prepared For:
Poggemeyer Design Group, Inc.
101 Clinton Street
Defiance, Ohio 43512

Prepared By:

TMS Engineers, Inc.
2112 Case Parkway South Unit \#7
Twinsburg, Ohio 44087

Table of Contents

Executive Summary iv-vi
Chapter 1 Introduction 1-7
1.1 Purpose of the Report 1
1.2 Study Objectives 2
1.3 Intersection Capacity \& Levels-of-Services 3
1.4 Intersection Turn Lanes 5
1.5 References 7
Chapter 2 Area Conditions 8-12
2.1 Transportation Network Study Area 8
2.2 Functional Classification. 10
2.3 Traffic 12
Chapter 3 Projected Traffic Conditions 13-27
3.1 Site Traffic 13
3.2 Adjusted Traffic 20
3.3 Non-Site Traffic 21
3.4 Future Traffic 25
Chapter 4 Traffic Analysis. 28-54
4.1 Capacity \& LOS at Study Area Intersections 28
4.2 Capacity \& LOS at Development Access Intersection 48
4.3 Auxiliary Turn Lane Warrant Analysis 50
4.4 Turn Lane Length Analysis 51
4.5 Improvements to Accommodate Study Area Traffic 54
Chapter 5 Conclusions 55-57

Appendices

Appendix A - Figures

Appendix B - Traffic Volume Forecast July 18, 2022
Appendix C - ODOT Turn Lane Design Criteria
Appendix D - SR 752 \& Business Place Traffic Data
Appendix E-Trip Generation Calculation Worksheet
Appendix F - No-Build Capacity Analysis Worksheets - 2024
Appendix G - Build Capacity Analysis Worksheets - 2024
Appendix H - Build Capacity Analysis Worksheets- 2024 w/ Improvements
Appendix I - No-Build Capacity Analysis Worksheets - 2044
Appendix J - Build Capacity Analysis Worksheets - 2044
Appendix K - No-Build Capacity Analysis Worksheets - 2044 w/ Improvements
Appendix L - Build Capacity Analysis Worksheets- 2044 w/ Improvements
Appendix M - Access Capacity Analysis Worksheets - 2024
Appendix N - Access Capacity Analysis Worksheets - 2044
Appendix 0-ODOT Turn Lane Warrant Graphs

List of Figures

APPENDIX

Figure 1.1 Project Location Map A
Figure 1.2 Site Plan A
Figure 2.1 Traffic Count Locations A
Figure 2.2 Aerial View A
Figure 2.3 Existing Conditions Lane Use \& Traffic Control A
Figure 2.4 Functional Classification A
Figure 2.52022 Existing Weekday Peak Hour Traffic Volumes A
Figure 3.1 Directional Distribution New Generated Vehicle Traffic A
Figure 3.2 Directional Distribution New Generated Truck Traffic. A
Figure 3.3 New Generated Vehicle Traffic. A
Figure 3.4 New Generated Truck Traffic A
Figure 3.52024 No-Build Peak Hour Traffic Volumes W/OUT Additional Developments A
Figure 3.62044 No-Build Peak Hour Traffic Volumes W/OUT Additional Developments A
Figure 3.72024 No-Build Peak Hour Traffic Volumes WITH Additional Developments A
Figure 3.82044 No-Build Peak Hour Traffic Volumes WITH Additional Developments A
Figure 3.9 2024 Build Peak Hour Traffic Volumes A
Figure 3.102044 Build Peak Hour Traffic Volumes A
Figure 4.1 Recommended Lane Use and Traffic Control A

Executive Summary

This Traffic Impact Study (TIS) has been prepared at the request of Poggemeyer Design Group for a proposed DHL facility. The proposed development is located in the Village of Ashville, Pickaway County, Ohio.

The development is expected to consist of a single 545,200 square foot building. The proposed building is located along the south side of State Route 752 to the east of US Route 23 and to the west of Business Place North. The building and site is expected to accommodate land uses related to commerce and fulfillment operations.

The year 2024 will be analyzed for the opening year conditions of the development based on the expected time line.

The development is proposed with two access locations. The project proposes an intersection along State Route 752 that would provide full access to the site. A second access location is proposed along Business Place North.

A Traffic Volume Forecast was previously prepared for use in this Traffic Impact Study. The development and submission of the traffic volume forecasts for the proposed project are intended to follow the TIS Review Process detailed in Section 9.32 and the TIS Flow Chart shown Figure 9.1 of the ODOT State Highway Access Management Manual (7). A copy of the July 18, 2022 Traffic Volume Forecast report can be seen in Appendix B.

The project has significantly changed to include only one proposed building since the completion of the July 18, 2022 Traffic Volume Forecast. The traffic volume forecast was updated within this TIS per the procedures, guidelines, and assumptions that were made in the July 18,2022 forecast document.

The weekday peak hours of traffic for the study area roadways were based on the traffic data collected for this report. The weekday AM peak hour of traffic was determined to be 7:00 AM to 8:00 AM. The weekday PM peak hour of traffic was found to be $3: 45 \mathrm{PM}$ to 4:45 PM. These periods were analyzed since they reflect the period of the highest volume of traffic flow for the study area roadways.

The proposed development is expected to generate the following hourly traffic volumes during the peak period as shown in the table below:

OPENING YEAR	SIZE	TRIP ENDS							
			Weekday Betwe	Peak Hour 7-9 AM			Weekda Betwe	Peak Hour 4-6 PM	
		Vehicles	Trucks	Vehicles	Trucks	Vehicles	Trucks	Vehicles	Trucks
2024	545,200	103	15	102	15	139	10	66	10
TOTAL NEW TRIPS		118		117		149		76	
		235				225			

The year 2044 was forecasted for the twenty year design hour conditions in the July 18,2022 forecast document. The year 2044 will continued to be used for the design year in order to provide a conservative analysis of the expected future conditions in the study area and to provide consistency with the previously prepared forecast document.

Recommended Improvements to Mitigate the Traffic Associated with the Development

The following improvements are recommended to improve the levels-of-service under the 2024 NoBuild conditions at the study area intersections.

SR 752 and SR 316/Ashville Pike (Village of Ashville)

- Extend the length of the southbound left turn lane (600').

Recommended Improvements to Mitigate the Traffic Associated with the Development

The following improvements are recommended to improve the levels-of-service under the 2024 Build conditions at the study area intersections.

US Route 23 and SR 752 (ODOT)
■ Construct a northbound right turn lane (800').

Development Access Recommendations

The following lane use and traffic control is recommended at the intersection where access to the site is proposed.

State Route 752 \& Proposed Site Access Driveway (Village of Ashville)
■ Construct an exclusive eastbound right turn lane (345') for the opening year of the development (2024 Build).
■ Construct an exclusive westbound left turn lane (345') in the opening year of the development (2024 Build).

- Construct the proposed south approach with one egress lanes and one ingress lane (2024 Build).
■ Install stop sign control on the northbound approach (2024 Build).

Conclusion

Based upon the results of the analysis in this study and the corresponding recommendations, it can be seen that the development traffic can be accommodated without adversely impacting the area roadway network.

Chapter 1

Introduction

1.1 Purpose of Report

This Traffic Impact Study (TIS) has been prepared at the request of Poggemeyer Design Group for a proposed DHL facility. The proposed development is located in the Village of Ashville, Pickaway County, Ohio. Figure 1.1, Appendix A details the development location.

The development is expected to consist of a single 545,200 square foot building. The building and site is expected to accommodate land uses related to commerce and fulfillment operations.

The year 2024 will be analyzed for the opening year conditions of the development based on the expected time line. The design year for the proposed project will be based on the opening year and the expected volume of new site generated traffic under the full build condition of the building.

The proposed building is located along the south side of State Route 752 to the east of US Route 23 and to the west of Business Place North.

The development is proposed with two access locations. The project proposes an intersection along State Route 752 that would provide full access to the site. A second access location is proposed along Business Place North. Figure 1.2, Appendix A shows the proposed development site plan.

A Traffic Volume Forecast was previously prepared for use in this Traffic Impact Study. The development and submission of the traffic volume forecasts for the proposed project are intended to follow the TIS Review Process detailed in Section 9.32 and the TIS Flow Chart shown Figure 9.1 of the ODOT State Highway Access Management Manual ${ }^{(7)}$. A copy of the July 18, 2022 Traffic Volume Forecast report can be seen in Appendix B.

It should be noted that since the completion of the July 18, 2022 Traffic Volume Forecast the project has significantly changed to include only one proposed building. The traffic volume forecast will be updated within this TIS per the procedures, guidelines, and assumptions that were made in the July 18, 2022 forecast document.

1.2 Study Objectives

This study is structured for the following purposes;

- to adequately assess the traffic impacts associated with the proposed development, and identify the level of off-site access and traffic,
- to provide a comprehensive study which evaluates and documents the traffic impacts and off-site improvements, where warranted,
- and to provide a technically sound basis to identify mitigation requirements to off-site traffic impacts.

This study documents the methodologies, findings and conclusions of the analysis, including the basis for all assumptions, traffic parameters utilized and conclusions reached.

The development of future traffic volumes will be based on the forecasting guidelines and methodology found in the Ohio Department of Transportation's Ohio Traffic Forecasting Manual, Volume $1{ }^{(4)} \boldsymbol{\&}$ Volume $2{ }^{(5)}$.

The traffic impacts will be determined by comparing the existing intersection levels-of-service, delay or density, volume to capacity ratio and queue storage ratio before the construction of the proposed development to the anticipated measures after the development is completed. Traffic analyses for the study area and access intersections will be calculated using the computerized version of the Transportation Research Board's Highway Capacity Manual $7^{\text {TH }}$ Edition ${ }^{(1)}$, (HCS2022, Release 8.1) and Synchro. Data inputs for the HCS software program will be based on the guidance found in the Ohio Department of Transportation's Analysis \& Traffic Simulation Manual (OATS) ${ }^{(6)}$.

The justification for any changes in the intersections will be determined by comparing data collected of the existing traffic conditions to the criteria established by the Ohio Manual of Uniform Traffic Control Devices ${ }^{(2)}$ and professional engineering judgment from an on-site field review.

Intersection geometric design guidelines will be based in the information and procedures found in the Ohio Department of Transportation's Location \& Design Manual, Volume $\mathbf{1 ~}^{(3)}$. The left and right turn lane warrants provided in Section 401-6 of the Location \& Design Manual, Volume $1{ }^{(3)}$ will be used in addition to the capacity analyses to determine the need for deceleration and exclusive turn lanes at unsignalized site access locations.

1.3 Intersection Capacity \& Levels-of-Service

Intersection capacity analyses will be performed at the study area and development access intersections using the procedures outlined in the computerized version of the Transportation Research Board's Highway Capacity Manual ${ }^{(1)}$.

The HCM ${ }^{(1)}$ is the most widely used document in the transportation industry. It contains a set of methodologies and application procedures for evaluating the capacity and quality of service of various transportation facilities. The $\mathbf{H C M}{ }^{(1)}$ is built from more than 60 years or research work and represents a body of expert transportation consensus.

The capacity analysis procedures provide a calculated "average vehicle delay", which is based on traffic volumes, number of lanes, type of traffic control, channelization, grade, and percentage of large vehicles in the traffic stream at each intersection. The average delay calculated at an intersection is then assigned a "grade" or level of service (LOS) ranging from LOS A, the best, to LOS F, the worst based upon driver expectation. The intersection LOS "grades" as defined by the Transportation Research Board are as follows:

Table 1.1 Intersection Levels-of-Service

LOS	UNSIGNALIZED AVERAGE DELAY PER VEHICLE (sec)	SIGNALIZED AVERAGE DELAY PER VEHICLE (sec)
A	≤ 10.0	≤ 10.0
B	10.1 to 15.0	10.1 to 20.0
C	15.1 to 25.0	20.1 to 35.0
D	25.1 to 35.0	35.1 to 55.0
E	35.1 to 50.0	55.1 to 80.0
F	>50	>80

Intersection capacity analyses will be performed in order to estimate the maximum amount of traffic that can be accommodated by the intersection while maintaining recommended operational qualities. No-Build and Build peak hour traffic volumes will be analyzed to determine the level-of-service (LOS) at the study area intersections.

The selection of the design level-of-service is most frequently chosen from Section 5.9 of the Ohio Department of Transportation's OATS Manual ${ }^{(6)}$. In most cases, a level-of-service D is considered the maximum delay threshold after which improvements should be investigated to determine if the delay can be reduced to a level of D or better. The following table from Section 5.9 details the operation goals for intersection analyses (All-Way Stop Control, Two-Way Stop Control, Signalized, \& Roundabout).

Table 1.2 Intersection Operational Goals

RESULT	INSIDE AN MPO	OUTSIDE AN MPO
Intersection LOS	D or BETTER	C or BETTER
Approach LOS	E or BETTER	
Control LOS	All movements <1.0 (<= 0.93 preferred)	
v/c	All movements <1.0 from HCS analysis, TransModeler may be needed to determine if queuing impacts upstream intersections.	
QSR		

MPO = Metropolitan Planning Organization $\mathrm{v} / \mathbf{c}=$ Volume to Capacity Ratio QSR = Queue Storage Ratio

The capacity analyses will determine if there are any locations, approaches or movements in which the delay, v / c, and QSR exceeds the operational goals shown in Table 1.2.

The capacity analyses for signalized intersections will be based on the process detailed in Section 6.2.2.1 of the ODOT OATS Manual ${ }^{(6)}$. All stop controlled intersections will be analyzed using the computerized version of the Transportation Research Board's Highway Capacity Manual $7^{7 \mathrm{TH}}$ Edition ${ }^{(1)}$, (HCS2022, Release 8.1). The signalized intersections will be analyzed as coordinated signal system.

It should be noted that any values for queue length, shown in the HCS analysis summary sheets that are displayed in red, indicate that the movement is expected to experience a "spillback" condition where the queue may exceed the existing length of the turn lane and extend into the adjacent through lane. These instances, if they occur, will be investigated for mitigation.

1.4 Intersection Turn Lanes

Turn Lane Warrants

The ODOT Location and Design Manual, Volume $1^{(3)}$ and the State Highway Access Management Manual ${ }^{(7)}$ describes the need for auxiliary turn lanes at unsignalized intersections. The Auxiliary Lane Graphs found in Section 401-6 of the Location and Design Manual, Volume $1{ }^{(4)}$ are used for this determination. This applies to the free-flow approaches at unsignalized intersections. Section 401.6.3 of the ODOT Location and Design Manual ${ }^{(4)}$ states that:
"To determine the number and use of left (right) turn lanes, intersection capacity analysis procedures of the current edition of the Highway Capacity Manual should be used. For unsignalized intersections, left (right) turn lanes may also be needed if they meet warrants provided in Figures 401-5(6)a, b, c and d. The warrants apply only to the free-flow approach of the unsignalized intersection."

It is the intent of this report to evaluate the need for exclusive deceleration and turn lanes at the proposed access location along State Route 752.

Turn Lane Length

Proposed turn lanes and existing turn lanes will be analyzed to determine the necessary turn lane storage length in accordance with the procedure found in the Ohio Department of Transportation's Location and Design Manual, Volume $\mathbf{1}^{(3)}$, Section 401. The ODOT criteria and procedures are furnished in Appendix B.

It should be noted that the recommended maximum length is 800 feet for a right turn lane and 600 feet for a left turn lane, however if the calculated turn lane length is lower than these values, the maximum length will not be applicable.

Design Speed

The procedure for determining the necessary turn lane storage length with the procedure found in the Ohio Department of Transportation's Location and Design Manual, Volume $1^{(3)}$,Section 401 is in part based on the design speed of the roadway.

The AASHTO publication, A Policy on Geometric Design of Highway Streets (Green Book) ${ }^{(11)}$, defines design speed as a selected speed used to determine the various geometric design features of the roadway. The assumed design speed should be a logical one with respect to the topography, anticipated operating speed, the adjacent land use and the functional classification of highway.

The ODOT Location and Design Manual, Volume $1{ }^{(3)}$ provides guidance for determining the design speed of a roadway. Section 104.2 of the ODOT Location and Design Manual ${ }^{(3)}$ states that:
"The design speed should match the legal speed for facilities with a legal speed of 35 mph or less. For facilities with a legal speed of 40 or 45 mph the design speed should either match the legal speed, or be 5 mph greater than the legal speed, depending on the context of the area. For facilities with a legal speed 50 mph or greater, the design speed should be 5 mph greater than the legal speed."

1.5 References

The following list of references will be utilized for this report and the analysis contained within it:

1. Highway Capacity Manual, 7th Edition, Transportation Research Board of the National Academies, Washington, D.C.
2. Ohio Manual of Uniform Traffic Control Devices for Streets and Highways, 2012 Edition. Ohio Department of Transportation, Office of Traffic Engineering, Columbus, Ohio.
3. Location and Design Manual, Volume 1, Roadway Design. Ohio Department of Transportation, Office of Roadway Engineering, Columbus, Ohio.
4. Ohio Traffic Forecasting Manual, Volume 1, Traffic Forecasting Background. Ohio Department of Transportation, Office of Statewide Planning \& Research, Columbus, Ohio.
5. Ohio Traffic Forecasting Manual, Volume 2, Traffic Forecasting Methodologies. Ohio Department of Transportation, Office of Statewide Planning \& Research, Columbus, Ohio.
6. ODOT Analysis and Traffic Simulation Manual (OATS), Ohio Department of Transportation, Office of Roadway Engineering, Columbus, Ohio.
7. State Highway Access Management Manual, Ohio Department of Transportation, Office of Roadway Engineering, Columbus, Ohio.
8. Trip Generation Manual, $11^{\text {th }}$ Edition, September 2021, Institute of Transportation Engineers, (ITE), Washington, D.C.
9. Trip Generation Handbook, $3^{\text {rd }}$ Edition, September 2017, Institute of Transportation Engineers, (ITE), Washington, D.C.
10. Traffic Engineering Manual, October 23, 2002 Edition (Revised January 15, 2021), Ohio Department of Transportation, Office of Roadway Engineering, Columbus, Ohio.
11. A Policy on Geometric Design of Highways and Streets (Green Book), 7^{TH} Edition, September 2018, American Association of State Highway and Transportation Officials, Washington, D.C.
12. Access Management Manual, 2^{ND} Edition, 2014. Transportation Research Board of the National Academies, Washington, D.C.

Chapter 2

Area Conditions

2.1 Transportation Network Study Area

The study area for the proposed development includes the previously discussed development access locations as shown in Figure 1.2, Appendix A and the following intersections:

1. US Route 23 \& State Route 752 /Rudi Lane
2. State Route 752 \& Business Place North
3. State Route 752 \& Ashville Pike

Rudi Lane is a proposed roadway that will be constructed as the west approach at the intersection of US Route 23 and State Route 752. The proposed roadway is part of the project to construct a Sheetz development at the intersection.

The Ohio Department of Transportation maintains the traffic signal control facilities at the intersection of State Route 752 and US Route 23. The Village of Ashville maintains the traffic signal control facility at the intersection of State Route 752 and State Route 316/Ashville Pike.

A location map detailing the traffic count locations can be seen in Figure 2.1, Appendix A.

The following table details the primary characteristics of the study area roadways:

Table 2.1 Roadway Characteristics

ROADWAY	\# LANES	ORIENTATION	SPEED LIMIT (MPH)	
			POSTED	DESIGN
US Route 23 @ SR 752	4	North-South	50	55
US Route 23 @ SR 316 (North)	4	North-South	35	35
US Route 23 @ SR 316 (South)	4	North-South	50	35
Ashville Pike	2	North-South	35	35
State Route 752 @ US 23	2	East-West	55	60
State Route 752 @ Proposed Access	2	East-West	55	60
State Route 752 @ Ashville Pike	2	East-West	35	35
Business Place North	2	North-South	25	25
Rudi Lane	2	East-West	25	25

An aerial view of the of the study area can be seen in Figure 2.2 Appendix A.

Figure 2.3, Appendix A shows the lane use and traffic control conditions based upon the existing conditions in the study area. These will be considered the existing base conditions for this report.

2.2 Functional Classification

The Ohio Department of Transportation functionally classifies roadways to help define a roadway's characteristics as well as identify roadways that are eligible for federal funds. Functional classification is the grouping of roads, streets, and highways in a hierarchy based on the type of highway service they provide. Generally, streets and highways perform two types of service. They provide either traffic mobility or land access and can be ranked in terms of the proportion of service they provide.

The functional classification as determined by ODOT will be used in this report to apply growth and design hour factors to the study area roadways for use in forecasting the future traffic volumes in the study area. These factors are determined using data, guidelines, and methodology supplied by ODOT. The methods and the corresponding data are based on the roadways assigned functional classification.

The ODOT methods for forecasting future traffic volumes are a recognized traffic engineering standard in the State of Ohio.

Roadways that are not listed as having a functional classification can be assigned into one of two categories. The first category is a local roadway and the second category is that of an access drive.

The ODOT functional classification of the roadways in the study area can currently be found using the ODOT Transportation Information Mapping System (TIMS). TIMS is ODOT's web-mapping portal where information about Ohio's transportation system can be found. TIMS can currently be found at the following web address:

https://gis.dot.state.oh.us/tims/

The following table lists the study area roadways that have an assigned functional classification as determined by ODOT and local government entities.

Table 2.1 Functional Classification

ROADWAY	AREA	FC \#	CLASSIFICATION
US Route 23	Urban	3	Principal Arterial
State Route 752	Urban	5	Major Collector
Ashville Pike	Urban	7	Local Roadway
Business Place North	Urban	7	Local Roadway
Rudi Lane	Urban	7	Local Roadway

Figure 2.4, Appendix A illustrates the section of the functional classification map for the study area.

2.3 Traffic

The traffic data and resulting traffic forecast for the expected No-Build and Build conditions were previously detailed in the "Traffic Volume Forecast - DHL Facility" that was dated July 18, 2022. A copy of the traffic volume forecast report can be found in Appendix B. The development project has since changed to include only one building along the south side of the State Route 752. The TIS will update the traffic forecast using the procedures and guidelines that were detailed in the July 18,2022 forecast.

Weekday Peak Hours

Weekday nine hour turning movement counts were performed at the following intersections:

1. US Route 23 \& State Route 752 (Thursday, 2/17/2022)
2. State Route 752 \& Business Place North (Tuesday, 8/9/2022)
3. State Route 752 \& Ashville Pike (Wednesday, 2/16/2022)

The weekday traffic counts were conducted in fifteen (15) minute intervals between the hours of 7AM - 10 AM, 11 AM - 2 PM, and 3 PM - 6 PM, then hourly totals were calculated. Average daily traffic was calculated for the roadways using expansion factors to account for daily and seasonal variations according to the recommendations and latest data from the Ohio Department of Transportation.

Copies of the intersection turn movement counts are included in Appendix B for the intersections of State Route 752 at US Route 23 and Ashville Pike. A copy of the intersection turn movement count for the intersection of State Route 752 and Business Place North is included in Appendix D.

Based on the collected traffic data, the peak hours for the study area were determined based on the AM and PM hour experiencing the highest total volume indicated in red in the previous tables. The weekday AM peak hour of traffic was determined to be 7:00 AM to 8:00 AM. The weekday PM peak hour of traffic was found to be 3:45 PM to 4:45: PM. These periods will be used to forecast expected and future traffic volumes since they reflect the period of the highest volume of vehicular traffic flow for the study area roadways on a weekday.

The existing AM and PM peak hour traffic volumes are shown in Figure 2.5, Appendix A. It should be noted that the discrepancy between traffic volumes at the intersection of SR 752/Business Place North and the adjacent intersections can be attributed to the data collection being performed on different dates.

Chapter 3

Projected Traffic Conditions

3.1 Site Traffic

Trip Generation

Calculating future total driveway trips requires an estimate of the traffic generated by the proposed development. The most widely accepted method of determining the amount of traffic that the proposed development will generate is to compare the proposed land use with existing facilities of the same use. The Institute of Transportation Engineers (ITE) has prepared a manual titled "Trip Generation Manual" ${ }^{(8)}$, which is a compilation of similar traffic generation studies to aide in making such a comparison. The most recent update of this manual is the 11^{TH} edition and was utilized for this study.

The ITE Trip Generation Manual ${ }^{(8)}$ was used in conjunction with available site specific data provided by DHL in order to forecast the expected development site generated traffic. Site generated traffic was prepared for passenger vehicle (vehicle) type traffic and truck (truck) traffic.

The following table details a breakdown of the building that is expected to occupy the site:

Table 3.1 Development Summary

BUILDING LOCATION	OPENING YEAR	SIZE (Square Feet)
South of SR 752 - East of US 23	2024	545,200

The developer provided an overview of the their North American facility operations. The overview showed that for buildings over 400,000 square feet that the 90% are operating 2 or 3 shift operations. The overview also provided a total headcount for each of the sectors that are served at the facilities. The sectors for the AM and PM peak hour vehicle traffic were determined to be the five highest. A copy of the facilities overview can be seen in Appendix B.

In order to determine the volume of expected site generated vehicle traffic a weighted average of the total headcount for the 5 largest sectors was calculated. It was assumed for the purpose of this report that one employee was equal to one trip in the peak hour due to the shift operations. The following table details the calculation of the site generated trip rate that will be used to forecast the volume of vehicle generated traffic by each building in the development:

Table 3.2 Vehicle Trip Rate Calculation

SECTOR	HEADCOUNT per 100,000 sf	WEIGHTED AVERAGE	WEIGHTED VALUE
Automotive	24	15.00%	3.600
Consumer	20	12.50%	2.500
Retail	51	31.88%	16.256
Technology	45	28.13%	12.656
Life Science/Healthcare	$\mathbf{1 6 0}$	12.50%	2.500
TOTAL	$\mathbf{1 0 0 \%}$	$\mathbf{3 7 . 5 1 3}$	

The weighted average should provide a conservative estimate of future traffic as the sectors being served at each building are currently unknown.

A rate of 37.5125 trips per 100,000 square foot will be applied to each building in the development in order to determine the peak hour site generated trips based on the results shown above in Table 3.2.

The peak hour site generated trips will be split in to entering and exiting trips based on the peak hour directional distributions provided for land use \#156 - High Cube Parcel Hub Warehouse from the ITE Trip Generation Manual ${ }^{(8)}$.

The developer provided the expected facility truck volumes from the consumer and ecommerce sectors. These sectors were selected as they provide the highest peak hour volume of truck traffic at DHL facilities and should provide a conservative estimate of the expected truck volumes during the AM and PM peak hours. These truck volumes were applied to the each of the proposed buildings based on the square footage of each. A copy of the provided truck data can be seen in Appendix B.

Trip generation calculations for the development were performed utilizing the supplied site specific data for vehicle and truck trips as well as data contained in the Trip Generation Manual ${ }^{(8)}$ and the methods outlined in the (ITE) Trip Generation Handbook ${ }^{(9)}$. A spreadsheet detailing the vehicle trip generation calculations can be found in Appendix E. The following table details the site generated vehicle and truck traffic volumes for each building in the proposed development.

Table 3.3 New Trip Summary

OPENING YEAR	SIZE	TRIP ENDS							
			Weekday Betwee	Peak Hour 7-9 AM			Weekday Betwe	Peak Hour $14-6 \mathrm{PM}$	
		Vehicles	Trucks	Vehicles	Trucks	Vehicles	Trucks	Vehicles	Trucks
2024	545,200 SF	103	15	102	15	139	10	66	10
TOTAL NEW TRIPS		118		117		149		76	
		235				225			

The ODOT State Highway Access Management Manual ${ }^{(7)}$ requires that ten year design hour traffic volumes be analyzed for a proposed development when the number of generated trips is below 500 in the peak hour and twenty year design hour traffic volumes when the number of generated trips is greater than 500 in the peak hour.

The proposed development is expected to generate a total of 235 driveway trips in the AM peak hour and a total of 225 driveway trips in the PM peak hour.

The year 2044 was forecasted for the twenty year design hour conditions in the July 18, 2022 Traffic Volume Forecast. The year 2044 will continued to be used for the design year in order to provide a conservative analysis of the expected future conditions in the study area and to provide consistency with the previously prepared forecast document.

Distribution of New Site Generated Weekday Traffic

Separate directional distributions will be prepared for passenger vehicle (vehicle) type traffic and truck (truck) traffic.

The directional distribution for the new generated vehicle traffic is a function of the prevailing operating conditions on the existing roadways. The distribution pattern that was assumed is shown in the tables that follow and is based upon the distributions detailed in the July 18, 2022 Traffic Volume Forecast. The vehicle trips were assumed to be primary trips made by people leaving home for work and then returning home. The vehicle trips were therefore assumed to enter and exit the study using the same route.

The following tables detail the distribution of the new generated vehicle trips for the proposed development under the opening and design year conditions.

Table 3.4 AM New Trip Origins and Destinations

ORIGIN/ DESTINATION	ROUTE	ENTER \% TOTAL	ENTER NEW TRIPS	EXIT \% TOTAL	EXIT NEW TRIPS
North	US 23	20%	21	20%	21
South	US 23	40%	41	40%	41
East	SR 752	20%	21	20%	20
North	Ashville Pike	10%	10	10%	10
South	Long Street (SR 316)	10%	10	10%	10
	TOTALS	$\mathbf{1 0 0 \%}$	$\mathbf{1 0 3}$	$\mathbf{1 0 0 \%}$	$\mathbf{1 0 2}$

Table 3.5 PM New Trip Origins and Destinations
2024 Opening Year

ORIGIN/ DESTINATION	ROUTE	ENTER \% TOTAL	ENTER NEW TRIPS	EXIT \% TOTAL	EXIT NEW TRIPS
North	US 23	20%	28	20%	13
South	US 23	30%	41	30%	20
East	SR 752	20%	28	20%	13
North	Ashville Pike	20%	28	20%	13
South	Long Street (SR 316)	10%	14	10%	7
	TOTALS	$\mathbf{1 0 0 \%}$	$\mathbf{1 3 9}$	$\mathbf{1 0 0 \%}$	$\mathbf{6 6}$

All truck traffic will enter and exit the development at the proposed intersection along State Route 752. Trucks will be prohibited from exiting the site to the east along State Route 752 through the use of way finding signs both on-site and off-site.

The distribution of the truck traffic was based on the all trucks using US Route 23 to travel north or south. The trucks were split with 60% originating from and destined to the north. The remaining 40% were assumed to enter from or exit to the south. The distribution was based on the existing volume patterns on US Route 23, the location of Rickenbacker International Airport, and the location of the facility to the south of the greater Columbus area.

Distribution of Site Generated Traffic

The distribution of new site generated vehicle traffic between the proposed access and the Business Place North access were based on the following assumptions:

- The site plan shows two symmetric parking fields on the on the east and west sides of the building. It will be assumed that the vehicles will park in the two areas at 50/50 split.
- It was assumed that 75% of entering traffic would use the first available access they encounter and 25% would use the other location. For example 50% of the vehicles from the west would use the west parking and 50% of the vehicles from the west would use the east parking area. 100% of the 50% of vehicles parking in the west parking lot would use the proposed SR 752 access. 50% of the 50% of vehicles parking in the east parking lot would use the proposed SR 752 access and travel through the site to the east parking lot and the remaining 50% of the 50% of vehicles parking in the east parking lot would use the Business Place North access.
- It was assumed that exiting traffic would use the access closest to the parking area to exit the site. Exiting traffic was therefore split 50/50 between the access locations.

The directional distribution for the new AM and PM peak hour generated vehicle traffic is shown graphically in Figure 3.1, Appendix A for the opening year conditions.

The directional distribution for the new AM and PM peak hour generated truck traffic is shown graphically in Figure 3.2, Appendix A for the opening year conditions.

Assignment of Site Generated Traffic - 2024 Opening Year

Based upon the distribution patterns shown in Figure 3.1, the new AM and PM peak site generated vehicle traffic was assigned to the study intersections. The assignment of the estimated site generated new vehicle traffic for the proposed development under the opening year conditions is shown graphically in Figure 3.3, Appendix A.

Based upon the distribution patterns shown in Figure 3.2 , the new AM and PM peak site generated truck traffic was assigned to the study intersections. The assignment of the estimated site generated new truck traffic for the proposed development under the opening year conditions is shown graphically in Figure 3.4, Appendix A.

3.2 Adjusted Traffic

The collected peak hour traffic volumes detailed in the Traffic Volume Forecast, Appendix A were reviewed to determine if they have been impacted due to the COVID-19 pandemic. The traffic volumes as they were collected may not be representative of a typical weekday under normal travel patterns and show less volume. The ODOT Modeling and Forecasting Section of the Office of Statewide Planning and Research has developed a process to calibrate counts that are artificially low due to the COVID-19 situation. An overview of the ODOT guidance and process is included in the Traffic Volume Forecast,

Appendix B.

A calculated factor greater than 1.0 indicates that the 2022 volumes do not exceed the 2020 historical data, therefore a calibration factor is necessary to account for the impact of the COVID-19 pandemic.

A calculated factor of less than 1.0 indicates that the 2022 volumes exceed the 2020 historical data, therefore a calibration factor is not necessary to account for the impact of the COVID-19 pandemic.

A COVID adjustment factor of 0.9682 detailed in the Traffic Volume Forecast, Appendix B indicates that the 2022 volumes exceed the 2020 historical data, therefore a calibration factor is not necessary to account for the impact of the COVID-19 pandemic on the collected traffic data.

3.3 Non-Site Traffic

Background Traffic Growth

Design of new roadways or improvements to existing roadways should not usually be based on current traffic volumes alone, but should consider future traffic volumes expected to make use of the facilities. Roadways should be designed to accommodate the traffic volume that is likely to occur within the design life of the facility. In a practical sense, this design volume should be a value that can be estimated with reasonable accuracy. It is believed that the maximum design period is in the range of 15 to 24 years. Therefore, a period of twenty years is widely used as a basis for design for large projects. A period of ten years is currently specified by the Ohio Department of Transportation for smaller projects. Traffic cannot usually be forecasted accurately beyond this period on a specific facility because of probable changes in the general regional economy, population, and land development along the roadway.

The year 2044 (Design Year) will be analyzed for the proposed development. Therefore, it is necessary to estimate historical growth rates in order to establish the future traffic on the study area roadways due to non-site related conditions.

Roadways, like those found in the study area, carry a significant amount of through traffic due to their functional characteristics. This through traffic component generally increases as regional growth occurs. Therefore, it is anticipated that existing traffic on these roadways may increase in future years.

The Mid-Ohio Regional Planning Commision (MORPC) was contacted in order to determine appropriate growth rates for the study area roadways. MORPC provided linear annual growth rates for the approaches at the study area intersections. Acopy of the email correspondence regarding growth rates for the study area can be seen in the Traffic Volume Forecast, Appendix B.

Design Hour Traffic

The traffic patterns on any roadway typically show considerable variation in the traffic volumes experienced during the various hours of the day and in the hourly volumes experienced throughout the year. A key decision in the design process involves determining which of these hourly traffic volumes should be used as the basis for the design.

It would be wasteful to predicate a design on the maximum peak hour traffic that occurs during the year and the use of the average hourly traffic would result in an inadequate design. The hourly traffic volumes used in a design should not be exceeded very often or by very much. However, the hourly traffic volumes should not be so high that traffic would rarely be sufficient to make full use of the designed facility.

Normal design policy in the State of Ohio is based upon a review of curves that depict the variation in hourly traffic volumes during the year. The Ohio Department of Transportation recommends using the $30^{\text {TH }}$ highest hour as a design control for rural streets. There is typically very little difference between the volumes in this range. The Ohio Department of Transportation provides factors or a methodology to determine factors that are applied to counted daily traffic volumes to determine appropriate design hour traffic volumes.

Following guidelines set forth in the ODOT State Highway Access Management Manual ${ }^{(7)}$, all analyses are required to examine the design hour volume for the adjacent roadway and peak hour traffic volume of the proposed development. The Ohio Traffic Forecasting Manual ${ }^{(4 \& 5)}$ will be used to determined peak hour factors for the study area roadways.

The design hour volumes are determined by multiplying the AM and PM peak hour volumes by the appropriate factors from the ODOT Peak Hour to Design Hour Factor Report based on the functional classification of the roadway, the day of the week and the month that the traffic data was collected. A copy of the ODOT's Peak Hour to Design Hour Factor Report can be seen in the Traffic Volume Forecast, Appendix B.

The peak hour to design hour factors assigned to the study area roadways can be seen in the Traffic Volume Forecast, Appendix B.

Peak Hour Factors

The intersection peak hour factor (PHF) is used to convert the hourly traffic volume into the flow rate that represents the busiest 15 minutes of the peak hour. The PHF is the sum of the traffic entering the intersection during the peak hour divided by four times the highest 15 minute volume during the peak hour. A PHF of 1 indicates that the traffic volume in each 15 minute volume is the same and therefore traffic flow is consistent throughout the hour. A lower PHF indicates a more variable traffic flow and that traffic volume has a spike during the peak 15 minute interval. PHF's under 0.80 occur in locations with highly peaked demand, such as at schools and factories during shift changes.

The ODOT Analysis and Traffic Simulation Manual ${ }^{(6)}$ provides guidance to use the existing year PHF for all intersections from traffic counts collected for the project. The PHF is calculated for the intersection as a whole and not individual approaches or movements. A minimum of 0.80 for the PHF is required to be utilized unless justified by highly peaked demands such as for schools and factories noted above. If project specific counts are not available, a default value of 0.92 is to be utilized for arterials.

It is assumed for this report that the PHF for the opening and design years are the same as the calculated PHF from the collected existing year traffic counts. The intersection PHF's are included in

Appendices B \& D.

Sheetz Development

A Sheetz development is currently under construction at the intersection of US Route 23 and State Route 752. The Sheetz development was analyzed in a Traffic Impact Study dated March 17, 2021. The TIS was reviewed and approved by ODOT.

A copy of the traffic volume figures from the Sheetz TIS that were added to the No-Build background traffic volumes can be seen in the Traffic Volume Forecast, Appendix B.

The site generated traffic as detailed in the Sheetz TIS were added to the calculated No-Build traffic volumes detailed in the Traffic Volume Forecast, Appendix B.

US Route 23 \& SR-316 Development

A Traffic Impact Study is currently being performed for a proposed mixed-used development at the southeast quadrant of the US Route 23 and State Route 316/Northup Avenue intersection. The development is expected to consist of retail space, commercial out lot parcels, multi-family units, duplex units, and single-family lots.

A copy of the traffic volume figures from the US 23/SR 316 Development TIS that were added to the NoBuild background traffic volumes can be seen in the Traffic Volume Forecast, Appendix B.

The site generated traffic as detailed in the US 23/SR 316 Development TIS were added to the calculated No-Build traffic volumes detailed in the Traffic Volume Forecast, Appendix B.

3.4 Future Traffic

No-Build Conditions w/out Sheetz \& US 23/SR 316 Development

The previously discussed calculation of design hour factors and growth rates for each movement were applied to the existing 2022 traffic volumes in order to estimate the future traffic considering nonproject traffic conditions without the development of the Sheetz or the proposed mixed-use development.

Spreadsheets detailing the use of the calculated growth rates and the design hour factors and the resulting expected 2024 and 2044 No-Build traffic volumes can be found in Appendix D for the intersection of State Route 752 and Business Place North. The remaining intersections can be seen in Appendix B.

The No-Build traffic volumes detailed in Appendices B \& D do not include the site generated traffic volumes from the Sheetz or the US 23/SR316 mixed-use development

Balancing traffic volumes is a process by which the differences between traffic volume data at adjacent traffic count locations is eliminated. The traffic volumes along State Route 752 were not "balanced" for the purpose of this report due to the number of driveways, intersections, and commercial/retail businesses between the three SR 752 count locations.

This traffic is the expected traffic if the proposed additional developments and the DHL facility are not constructed, a "No-Build w/out Additional Developments" condition. The estimated 2024 and 2044 No-Build w/out Additional Developments traffic volumes for the study area are shown graphically in Figures 3.5 \& 3.6, Appendix A.

The No-Build w/out Additional Developments traffic volumes have been rounded to the nearest 10 to adhere to preferred ODOT practices.

No-Build Conditions w/ Sheetz \& US 23/SR 316 Development

In order to estimate the 2024 opening year No-Build traffic considering the background traffic and the additional developments in the study area, the sum of the 2024 No-Build volumes, shown in Figure 3.5, Appendix A, were added to the new generated traffic (Appendix B). These traffic volumes are the expected volumes if the additional developments in the study area are constructed and the proposed DHL development is not constructed, or a "No-Build with Additional Development" condition.

The estimated 2024 opening year No-Build with Additional Development traffic volumes for the study area are shown graphically in Figure 3.7, Appendix A for the study area.

In order to estimate the 2044 design year No-Build traffic considering the background traffic and the additional developments in the study area, the sum of the 2044 No-Build volumes, shown in Figure 3.6, Appendix A, were added to the new generated traffic (Appendix B). These traffic volumes are the expected volumes if the additional developments in the study area are constructed and the proposed DHL development is not constructed, or a "No-Build with Additional Development" condition.

The estimated 2044 design year No-Build with Additional Development traffic volumes for the study area are shown graphically in Figure 3.8, Appendix A for the study area.

Project Build Conditions

In order to estimate the future opening year traffic considering project traffic conditions, the sum of the 2024 No-Build with Additional Development volumes, shown in Figure 3.7, Appendix A, were added to the new generated traffic (Figures 3.3 \& 3.4) to equal the future 2024 Build peak hour volumes.

The estimated 2024 Build traffic volumes for the study area are shown graphically in Figure 3.9, Appendix A for the proposed development. These traffic volumes are the expected volumes if the proposed development is constructed, or a "Build" condition. These conditions represent the expected opening year conditions.

In order to estimate the future design year traffic considering project traffic conditions, the sum of the 2044 with Additional Development No-Build volumes, shown in Figure 3.8, Appendix A, were added to the new generated traffic (Figures 3.3-3.4) to equal the future 2044 Build peak hour volumes.

The estimated 2044 Build traffic volumes for the study area are shown graphically in Figure 3.10, Appendix A for the proposed development. These traffic volumes are the expected volumes if the proposed development is constructed, or a "Build" condition. These conditions represent the expected design year conditions.

Chapter 4
 Traffic Analysis

4.1 Capacity \& LOS at Study Area Intersection

2024 Traffic Analysis - No-Build \& Build Conditions

Traffic analyses were performed for the projected 2024 conditions under the No-Build and Build scenarios so:

1. any existing roadway/intersection deficiencies can be identified in the No-Build scenario which would not be attributable to the development, and;
2. a comparison can be made to determine the changes in the traffic operations which may be attributed to the development.

The traffic volumes used in the No-Build analyses can be seen in Figure 3.7, Appendix A. Copies of the capacity worksheets for the No-Build analyses are included in Appendix F.

The traffic volumes used in the Build analyses can be seen in Figure 3.9, Appendix A. Copies of the capacity worksheets for the Build analyses are included in Appendix G.

Intersection \#1-US Route 23 \& State Route 752

Comparison tables of the 2024 No-Build versus Build traffic analyses for the signalized intersection of US Route 23 and State Route 752 are shown in the following tables:

Table 4.1-2024 AM Peak Hour Traffic Analysis Results
(US $23 \&$ SR 752)

Table 4.2-2024 PM Peak Hour Traffic Analysis Results
(US 23 \& SR 752)

Intersection \#1	2024 PM Traffic Signal Control No-Build Conditions					Intersection \#1	2024 PMBuild Conditions				
 SR 752	LOS	Delay (sec/veh)	v/c	QSR	95th \%tile Queue (ft)	US 23 \& SR 752	LOS	Delay (sec/veh)	v/c	QSR	95th \%tile Queue (ft)
EBT	C	30.1	0.269	0.00	83	EBT	C	31.1	0.250	0.00	90
EBR	c	30.0	0.251	0.24	67	EBR	c	30.9	0.221	0.26	73
EB Approach	C	30.0	-	-	-	EB Approach	C	31.0	-	-	-
WBT	D	35.4	0.720	0.00	233	WBT	D	38.8	0.772	0.00	290
WB Approach	D	35.4	-	-	-	WB Approach	D	38.8	-	-	-
NBL	C	20.1	0.366	0.08	36	NBL	C	22.6	0.398	0.09	41
NBT	C	21.8	0.686	0.25	400	NBT	C	25.3	0.722	0.30	480
NBR	C	22.1	0.687	0.24	384	NBR	C	25.7	0.724	0.28	448
NB Approach	C	21.8	-	-	-	NB Approach	C	25.3	-	-	-
SBL	B	13.0	0.309	0.17	37	SBL	B	16.5	0.464	0.29	64
SBT	D	43.4	0.958	0.00	695	SBT	D	46.2	0.960	0.00	765
SBR	D	44.7	0.964	0.00	703	SBR	D	47.6	0.965	0.00	770
SB Approach	D	42.4	-	-	-	SB Approach	D	44.7	-	-	-
Intersection	C	33.9	-	-	-	Intersection	D	36.6	-	-	-

Conditions at the signalized intersection of US Route 23 and State Route 752 during the AM and PM peak hours were determined to operate with level-of-service D or better under the forecasted 2024 NoBuild conditions. No improvements were found to be necessary to improve the levels-of-service under the 2024 No-Build conditions at the study area intersection.

The 2024 AM and PM peak hour comparison tables for the intersection of US Route 23 and State Route 752 shown previously, indicate that the intersection and approach delays are impacted with the addition of the development generated traffic under the forecasted 2024 AM and PM peak hour conditions. An analysis will be performed in a later section of this report to determine what improvement will provide an acceptable level of service in the AM and PM peak periods that will adhere to the acceptable ranges shown in Table 1.3 as stated in the ODOT OATS Manual ${ }^{(6)}$.

Intersection \#2 - State Route 752 \& Business Place North

Comparison tables of the 2024 No-Build versus Build traffic analyses for the unsignalized intersection of State Route 752 and Business Place North are shown in the following tables:

Table 4.3-2024 Traffic Analysis Results (SR 752 \& Business Place North)

Table 4.4-2024 Traffic Analysis Results
(SR 752 \& Business Place North)

Intersection \#2	2024 PM No-Build Conditions			Two-Way Stop Control $Q_{95} \%$ tile (Veh/Ln)	Intersection \#2	2024 PM Build Conditions			Two-Way top Control
SR 752 \& Business Place	LOS	Delay (sec/veh)	v/c		SR 752 \& Business Place	LOS	Delay (sec/veh)	v/c	Q ${ }_{95}$ \%tile (Veh/Ln)
EBL	A	7.8	0.00	0.0	EBL	A	7.8	0.00	0.0
EB Approach	A	0.0	--	--	EB Approach	A	0.0	--	--
WBL	A	7.9	0.01	0.0	WBL	A	8.2	0.06	0.2
WB Approach	A	0.4	--	--	WB Approach	A	2.2	--	--
NBT	B	12.5	0.05	0.2	NBT	C	15.8	0.16	0.6
NB Approach	B	12.5	--	--	NB Approach	C	15.8	--	--
SBT	B	12.5	0.05	0.2	SBT	B	14.9	0.06	0.2
SB Approach	B	12.5	--	--	SB Approach	B	14.9	--	--

Conditions at the unsignalized intersection of State Route 752 and Business Place North during the AM and PM peak hours were determined to operate with level-of-service C or better under the forecasted 2024 No-Build conditions. No improvements were found to be necessary to improve the levels-ofservice under the 2024 No-Build conditions at the study area intersection.

The 2024 AM and PM peak hour comparison tables for the intersection of State Route 752 and Business Place North shown previously, indicate that the approach delays are not significantly impacted with the addition of the development generated traffic under the forecasted 2024 AM and PM peak hour conditions. The Build levels of service for all movements and approaches are within the acceptable range shown in Table 1.3 as stated in the ODOT OATS Manual ${ }^{(6)}$.

Intersection \#3 - State Route 752 \& State Route 316/Ashville Pike

Comparison tables of the 2024 No-Build versus Build traffic analyses for the signalized intersection of State Route 752 and State Route 316/Ashville Pike are shown in the following tables:

Table 4.5-2024 AM Peak Hour Traffic Analysis Results
(SR 752 \& SR 316/Ashville Pike)

Intersection \#3	2024 AM Traffic Signal Control No-Build Conditions					Intersection \#3	2024 AM Build Conditions Traffic Signal Control				
$\begin{gathered} \text { SR } 752 \text { \& } \\ \text { SR } 316 \end{gathered}$	LOS	Delay (sec/veh)	v/c	QSR	95th \%tile Queue (ft)	$\begin{gathered} \text { SR } 752 \text { \& } \\ \text { SR } 316 \end{gathered}$	LOS	Delay (sec/veh)	v/c	QSR	95th \%tile Queue (ft)
EBL	B	18.1	0.212	0.21	42	EBL	B	18.3	0.252	0.24	48
EBT	C	26.8	0.749	0.00	203	EBT	C	27.7	0.828	0.00	228
EB Approach	C	25.0	-	-	-	EB Approach	C	25.7	-	-	-
WBL	B	19.5	0.188	0.13	26	WBL	B	19.9	0.204	0.13	0
WBT	C	25.2	0.594	0.00	145	WBT	C	26.0	0.660	0.00	168
WB Approach	C	24.2	-	-	-	WB Approach	C	25.0	-	-	-
NBL	B	18.2	0.145	0.23	32	NBL	B	18.3	0.179	0.27	38
NBT	C	26.3	0.689	0.00	180	NBT	C	26.6	0.694	0.00	183
NB Approach	C	24.8	-	-	-	NB Approach	C	24.8	-	-	-
SBL	C	20.4	0.579	1.05	126	SBL	C	20.8	0.586	1.07	128
SBT	C	21.5	0.385	0.00	100	SBT	C	22.4	0.430	0.00	110
SB Approach	C	20.9	-	-	-	SB Approach	C	21.6	-	-	-
Intersection	C	23.6	-	-	-	Intersection	C	24.2	-	-	-

Table 4.6-2024 PM Peak Hour Traffic Analysis Results
(SR 752 \& SR 316/Ashville Pike)

Conditions at the signalized intersection of State Route 752 and State Route 316 during the AM and PM peak hours were determined to operate with level-of-service C or better under the forecasted 2024 NoBuild conditions. The comparison tables indicates that the storage length of the southbound left turn lane may be inadequate for future 2024 No-Build conditions. An analysis will be performed in a later section of this report to determine the queue length need to mitigate the effect or any other improvement that could reduce the queue storage length. No improvements were found to be necessary to improve the levels-of-service under the 2024 No-Build conditions at the study area intersection.

The 2024 AM and PM peak hour comparison tables for the intersection of State Route 752 and State Route 316 shown previously, indicate that the intersection and approach delays are not significantly impacted with the addition of the development generated traffic under the forecasted 2024 AM and PM peak hour conditions. The Build levels of service for all movements, approaches and the intersection are within the acceptable range shown in as Table 1.3 stated in the ODOT OATS Manual ${ }^{(6)}$.

2024 Traffic Analysis - Improvements

Traffic analyses for 2024 Build conditions indicate that the development will impact the capacity at the intersection of US 23 at SR 752. The northbound right turn movement level-of-service was not found to be within the acceptable range shown in Table 1.3 as stated in the ODOT OATS Manual ${ }^{(6)}$.

Certain improvements were tested with further capacity analyses in order to determine what mitigation would be necessary to improve the levels-of-service at the this intersection under the forecasted 2024 Build conditions.

The following Build improvements were determined to improve the levels-of-service at the signalized intersection of US Route 23 and SR 752.

- Construct a northbound right turn lane.
- Update signal sequence to include right turn overlap phase for eastbound right turn movement with protected left turn phase for northbound left turn movement.

The following table shows the capacity analysis results of the recommended improvements. Copies of the capacity worksheets for the intersection are included in Appendix H.

Table 4.7-2024 Traffic Analysis Results - Improvements
(US $23 \&$ SR 752)

The identified 2024 Build improvements will be included in all Build analysis going forward in this report.

2044 Traffic Analysis - No-Build \& Build Conditions

Traffic analyses were performed for the projected 2044 conditions under the No-Build and Build scenarios so:

1. any existing roadway/intersection deficiencies can be identified in the No-Build scenario which would not be attributable to the development, and;
2. a comparison can be made to determine the changes in the traffic operations which may be attributed to the development.

The traffic volumes used in the No-Build analyses can be seen in Figure 3.8, Appendix A. Copies of the capacity worksheets for the No-Build analyses are included in Appendix I.

The traffic volumes used in the Build analyses can be seen in Figure 3.10, Appendix A. Copies of the capacity worksheets for the Build analyses are included in Appendix J.

Intersection \#1-US Route 23 \& State Route 752

Comparison tables of the 2044 No-Build versus Build traffic analyses for the signalized intersection of US Route 23 and State Route 752 are shown in the following tables:

Table 4.8-2044 AM Peak Hour Traffic Analysis Results
(US $23 \&$ SR 752)

Intersection \#1	2044 AM Traffic Signal Control No-Build Conditions					Intersection \#1	2044 AM Build Conditions Traffic Signal Control				
 SR 752	LOS	Delay (sec/veh)	v/c	QSR	95th \%tile Queue (ft)	 SR 752	LOS	Delay (sec/veh)	v/c	QSR	95th \%tile Queue (ft)
EBT	D	47.4	0.543	0.00	170	EBT	D	40.9	0.439	0.00	155
EBR	D	42.8	0.254	0.30	84	EBR	C	31.8	0.154	0.25	70
EB Approach	D	45.8	-	-	-	EB Approach	D	37.8	-	-	-
WBT	E	65.1	0.829	0.00	343	WBT	E	72.6	0.913	0.00	465
WB Approach	E	65.1	-	-	-	WB Approach	E	72.6	-	-	-
NBL	B	15.9	0.409	0.13	59	NBL	C	20.4	0.460	0.15	68
NBT	F	82.0	1.096	0.99	1584	NBT	F	83.4	1.106	0.89	1424
NBR	F	100.7	1.143	1.10	1760	NBR	B	16.7	0.373	0.14	224
NB Approach	F	87.9	-	-	-	NB Approach	E	71.6	-	-	-
SBL	D	51.7	0.788	0.64	141	SBL	F	106.6	0.992	1.55	341
SBT	C	21.8	0.721	0.00	508	SBT	C	28.3	0.785	0.00	583
SBR	C	21.9	0.723	0.00	505	SBR	C	28.5	0.786	0.00	580
SB Approach	C	24.1	-	-	-	SB Approach	D	36.0	-	-	-
Intersection	E	62.4	-	-	-	Intersection	E	58.0	-	-	-

Table 4.9-2044 PM Peak Hour Traffic Analysis Results
(US 23 \& SR 752)

Intersection \#1	2044 PM Traffic Signal Cont No-Build Conditions					Intersection \#1					
 SR 752	LOS	Delay (sec/veh)	v/c	QSR	95th \%tile Queue (ft)	 SR 752	LOS	Delay (sec/veh)	v/c	QSR	95th \%tile Queue (ft)
EBT	C	34.0	0.283	0.00	95	EBT	D	37.5	0.257	0.00	110
EBR	C	33.8	0.259	0.27	76	EBR	C	31.5	0.176	0.29	81
EB Approach	C	33.9	-	-	-	EB Approach	C	34.8	-	-	-
WBT	F	95.6	1.022	0.00	503	WBT	F	104.5	1.040	0.00	628
WB Approach	F	95.6	-	-	-	WB Approach	F	104.5	-	-	-
NBL	C	22.9	0.406	0.10	45	NBL	C	28.3	0.473	0.13	59
NBT	C	30.8	0.859	0.41	656	NBT	C	25.1	0.769	0.37	592
NBR	C	32.3	0.871	0.41	656	NBR	B	15.6	0.264	0.10	160
NB Approach	C	31.1	-	-	-	NB Approach	C	24.0	-	-	-
SBL	C	21.2	0.514	0.30	66	SBL	C	22.3	0.632	0.44	97
SBT	F	107.3	1.160	0.00	1458	SBT	F	104.1	1.142	0.00	1565
SBR	F	111.8	1.171	0.00	1493	SBR	F	108.5	1.153	0.00	1598
SB Approach	F	105.1	-	-	-	SB Approach	F	100.9	-	-	-
Intersection	E	74.5	-	-	-	Intersection	E	70.6	-	-	-

Conditions at the signalized intersection of US Route 23 and State Route 752 during the AM and PM peak hours were determined to operate with movement and approach levels-of-service under the forecasted 2044 No-Build conditions that fail to meet the acceptable ranges as detailed in Table 1.3 as stated in the ODOT OATS Manual ${ }^{(6)}$.

The 2044 AM and PM peak hour comparison tables for the intersection of US Route 23 and State Route 752 shown previously, indicate that the intersection and approach delays are impacted with the addition of the development generated traffic under the forecasted 2044 AM and PM peak hour conditions. An analysis will be performed in a later section of this report to determine what improvement will provide an acceptable level-of-service in the AM and PM peak periods that will adhere to the acceptable ranges shown in Table 1.3 as stated in the ODOT OATS Manual ${ }^{(6)}$.

Intersection \#2 - State Route 752 \& Business Place North

Comparison tables of the 2044 No-Build versus Build traffic analyses for the unsignalized intersection of State Route 752 and Business Place North are shown in the following tables:

Table 4.10-2044 Traffic Analysis Results
(SR 752 \& Business Place North)

Intersection \#2	2044 AM No-Build Conditions			Two-Way Stop Control Q $_{95} \%$ tile (Veh/Ln)	Intersection \#2	2044 AM Build Conditions			Two-Way Stop Control Q $_{95}$ \%tile (Veh/Ln)
 Business Place	LOS	Delay (sec/veh)	v/c		SR 752 \& Business Place	LOS	Delay (sec/veh)	v/c	
EBL	A	7.9	0.01	0.0	EBL	A	7.9	0.01	0.0
EB Approach	A	0.4	--	--	EB Approach	A	0.4	--	--
WBL	A	7.8	0.01	0.0	WBL	A	8.0	0.04	0.1
WB Approach	A	0.4	--	--	WB Approach	A	1.4	--	--
NBT	B	12.5	0.05	0.1	NBT	C	16.3	0.21	0.8
NB Approach	B	12.5	--	--	NB Approach	C	16.3	--	--
SBT	A	9.8	0.00	0.0	SBT	A	9.9	0.00	0.0
SB Approach	A	9.8	--	--	SB Approach	A	9.9	--	--

Table 4.11-2044 Traffic Analysis Results
(SR 752 \& Business Place North)

Intersection \#2	2044 PM No-Build Conditions			Two-Way Stop Control $Q_{95} \%$ tile (Veh/Ln)	Intersection \#2	2044 PM Build Conditions			Two-Way top Control
SR 752 \& Business Place	LOS	Delay (sec/veh)	v/c		SR 752 \& Business Place	LOS	Delay (sec/veh)	v/c	Q ${ }_{95}$ \%tile (Veh/Ln)
EBL	A	8.0	0.00	0.0	EBL	A	8.1	0.00	0.0
EB Approach	A	0.0	--	--	EB Approach	A	0.0	--	--
WBL	A	8.2	0.01	0.0	WBL	A	8.5	0.07	0.2
WB Approach	A	0.4	--	--	WB Approach	A	2.0	--	--
NBT	B	14.9	0.06	0.2	NBT	C	20.3	0.21	0.8
NB Approach	B	14.9	--	--	NB Approach	C	20.3	--	--
SBT	B	14.9	0.06	0.2	SBT	C	18.5	0.08	0.3
SB Approach	B	14.9	--	--	SB Approach	C	18.5	--	--

Conditions at the unsignalized intersection of State Route 752 and Business Place North during the AM and PM peak hours were determined to operate with level-of-service C or better under the forecasted 2044 No-Build conditions. No improvements were found to be necessary to improve the levels-ofservice under the 2044 No-Build conditions at the study area intersection.

The 2044 AM and PM peak hour comparison tables for the intersection of State Route 752 and Business Place North shown previously, indicate that the approach delays are not significantly impacted with the addition of the development generated traffic under the forecasted 2044 AM and PM peak hour conditions. The Build levels of service for all movements and approaches are within the acceptable range shown in Table 1.3 as stated in the ODOT OATS Manual ${ }^{(6)}$.

Intersection \#3 - State Route 752 \& State Route 316/Ashville Pike

Comparison tables of the 2044 No-Build versus Build traffic analyses for the signalized intersection of State Route 752 and State Route 316/Ashville Pike are shown in the following tables:

Table 4.12-2044 AM Peak Hour Traffic Analysis Results
(SR 752 \& SR 316-Long Street/Ashville Pike)

Intersection \#3	2044 AM Traffic Signal Control No-Build Conditions					Intersection \#3	2044 AM Traffic Signal Control Build Conditions				
$\begin{gathered} \text { SR } 752 \& \\ \text { SR } 316 \end{gathered}$	LOS	Delay (sec/veh)	v/c	QSR	95th \%tile Queue (ft)	$\begin{gathered} \text { SR } 752 \& \\ \text { SR } 316 \end{gathered}$	LOS	Delay (sec/veh)	v/c	QSR	95th \%tile Queue (ft)
EBL	C	24.7	0.358	0.39	78	EBL	C	25.3	0.395	0.46	92
EBT	D	37.3	0.897	0.00	365	EBT	D	39.2	0.922	0.00	415
EB Approach	C	34.7	-	-	-	EB Approach	D	36.3	-	-	-
WBL	C	26.0	0.295	0.24	48	WBL	C	27.3	0.329	0.25	50
WBT	D	37.0	0.710	0.00	285	WBT	D	38.2	0.722	0.00	318
WB Approach	D	35.2	-	-	-	WB Approach	D	36.5	-	-	-
NBL	C	23.4	0.227	0.52	73	NBL	C	25.1	0.265	0.64	90
NBT	D	38.1	0.896	0.00	355	NBT	D	39.9	0.898	0.00	373
NB Approach	D	35.1	-	-	-	NB Approach	D	36.6	-	-	-
SBL	D	41.6	0.871	2.38	286	SBL	D	44.5	0.883	2.52	302
SBT	C	25.3	0.435	0.00	193	SBT	C	26.9	0.458	0.00	213
SB Approach	C	34.6	-	-	-	SB Approach	D	36.7	-	-	-
Intersection	c	34.9	-	-	-	Intersection	D	36.5	-	-	-

Table 4.13-2044 PM Peak Hour Traffic Analysis Results
(SR 752 \& SR 316-Long Street/Ashville Pike)

Intersection \#3	2044 PM Traffic Signal Control No-Build Conditions					Intersection \#3	2044 PM Traffic Signal Control Build Conditions				
$\begin{gathered} \text { SR } 752 \& \\ \text { SR } 316 \end{gathered}$	LOS	Delay (sec/veh)	v/c	QSR	95th \%tile Queue (ft)	$\begin{gathered} \text { SR } 752 \& \\ \text { SR } 316 \end{gathered}$	LOS	Delay (sec/veh)	v/c	QSR	95th \%tile Queue (ft)
EBL	C	29.9	0.549	0.66	132	EBL	C	34.3	0.630	0.85	170
EBT	D	41.1	0.782	0.00	383	EBT	D	42.8	0.756	0.00	440
EB Approach	D	38.0	-	-	-	EB Approach	D	40.4	-	-	-
WBL	C	31.0	0.535	0.64	128	WBL	D	35.4	0.551	0.75	150
WBT	D	41.2	0.838	0.00	400	WBT	D	46.8	0.857	0.00	490
WB Approach	D	38.6	-	-	-	WB Approach	D	44.0	-	-	-
NBL	C	27.0	0.370	0.44	62	NBL	C	32.1	0.498	0.62	87
NBT	C	31.0	0.558	0.00	305	NBT	C	33.8	0.533	0.00	340
NB Approach	C	30.3	-	-	-	NB Approach	C	33.4	-	-	-
SBL	C	22.5	0.342	0.89	107	SBL	C	24.8	0.337	1.03	124
SBT	D	36.0	0.884	0.00	528	SBT	D	40.5	0.898	0.00	638
SB Approach	C	33.4	-	-	-	SB Approach	D	37.6	-	-	-
Intersection	D	35.2	-	-	-	Intersection	D	39.1	-	-	-

Conditions at the signalized intersection of State Route 752 and State Route 316 during the AM and PM peak hours were determined to operate with level-of-service D or better under the forecasted 2044 NoBuild conditions. The comparison tables indicates that the storage length of the southbound left turn lane may be inadequate for future 2044 No-Build conditions. An analysis will be performed in a later section of this report to determine the queue length need to mitigate the effect or any other improvement that could reduce the queue storage length. No improvements were found to be necessary to improve the levels-of-service under the 2044 No-Build conditions at the study area intersection.

The 2044 AM and PM peak hour comparison tables for the intersection of State Route 752 and State Route 316 shown previously, indicate that the intersection and approach delays are not significantly impacted with the addition of the development generated traffic under the forecasted 2044 AM and PM peak hour conditions. The Build levels of service for all movements and approaches are within the acceptable range shown in Table 1.3 as stated in the ODOT OATS Manual ${ }^{(6)}$.

2044 Traffic Analysis - Improvements

Traffic analyses for 2044 No-Build conditions revealed issues at the intersection of US Route 23 and State Route 752 where levels-of-service were not found to be within the acceptable range shown in Table 1.3 as stated in the ODOT OATS Manual ${ }^{(6)}$.

Certain improvements were tested with further capacity analyses in order to determine what mitigation would be necessary to improve the levels-of-service at this intersection under the forecasted 2044 No-Build conditions.

The following No-Build improvement were determined to improve the levels-of-service at the signalized intersection of US Route 23 and SR 752.

- Construct a northbound right turn lane (2024 Build).
- Construct a southbound right turn lane.
- Construct a westbound right turn lane.
- Update signal sequence to include right turn overlap phases with the protected left turn phases.

The following table shows the capacity analysis results of the recommended improvements. Copies of the capacity worksheets for the intersection are included in Appendix K.

Table 4.14-2044 Traffic Analysis Results - Improvements
(US 23 \& SR 752)

Intersection \#1	2044 AM No-Build Conditions			Traffic Signal Control Improvements		Intersection \#1	2044 PM No-Build Conditions			Traffic Signal Control Improvements	
 SR 752	LOS	Delay (sec/veh)	v/c	QSR	95th \%tile Queue (ft)	 SR 752	LOS	Delay (sec/veh)	v/c	QSR	95th \%tile Queue (ft)
EBT	D	41.8	0.513	0.00	140	EBT	D	41.7	0.285	0.00	118
EBR	C	32.9	0.214	0.23	64	EBR	D	35.3	0.205	0.31	87
EB Approach	D	38.7	-	-	-	EB Approach	D	38.8	-	-	-
WBT	D	43.1	0.609	0.00	165	WBT	E	61.5	0.808	0.00	340
WBR	C	34.4	0.317	0.00	95	WBR	D	36.1	0.241	0.00	103
WB Approach	D	39.6	-	-	-	WB Approach	D	54.6	-	-	-
NBL	B	13.1	0.366	0.10	45	NBL	C	29.1	0.473	0.14	63
NBT	F	43.9	1.014	0.60	960	NBT	C	20.3	0.713	0.33	528
NBR	B	10.6	0.288	0.08	130	NBR	B	12.3	0.195	0.07	105
NB Approach	D	38.7	-	-	-	NB Approach	B	19.8	-	-	-
SBL	C	25.4	0.664	0.39	86	SBL	B	16.4	0.438	0.25	55
SBT	B	17.2	0.734	0.00	398	SBT	F	72.7	1.085	0.00	1288
SBR	A	8.5	0.042	0.00	15	SBR	B	10.9	0.060	0.00	30
SB Approach	B	17.6	-	-	-	SB Approach	E	68.3	-	-	-
Intersection	C	31.4	-	-	-	Intersection	D	48.4	-	-	-

In order to further improve the levels-of-service at intersection of US Route 23 and State Route 752 additional through lanes would likely be necessary. Due to the existing lane use and adjacent land uses any geometric improvements would be high cost and would likely impact the adjacent intersections and land uses. These type of improvements at the intersection would likely be unfeasible and therefore no further consideration to mitigating the levels of service will be given at this location.

Traffic analyses for 2044 Build conditions indicates that the development will impact the capacity at the intersection of US Route 23 and State Route 752 . Certain improvements were tested with further capacity analyses in order to determine what further mitigation would be necessary to improve the levels-of-service at the this intersection under the forecasted 2044 Build conditions.

The following Build improvement were determined to improve the levels-of-service at the signalized intersection of US Route 23 and SR 752.

- Construct a northbound right turn lane (2044 No-Build).
- Construct a southbound right turn lane (2044 No-Build).
- Construct a westbound right turn lane (2044 No-Build).
- Update signal sequence to include right turn overlap phases with the protected left turn phases (2044 No-Build).

The following table shows the capacity analysis results of the recommended improvements. Copies of the capacity worksheets for the intersection are included in Appendix L.

Table 4.15-2044 Traffic Analysis Results - Improvements
(US 23 \& SR 752)

Intersection \#1	2044 AM Build Conditions			Traffic Signal Control Improvements		Intersection \#1	2044 PM Build Conditions			Traffic Signal Control Improvements	
 SR 752	LOS	Delay (sec/veh)	v/c	QSR	95th \%tile Queue (ft)	 SR 752	LOS	Delay (sec/veh)	v/c	QSR	95th \%tile Queue (ft)
EBT	D	45.9	0.441	0.00	165	EBT	D	40.0	0.283	0.00	113
EBR	D	37.1	0.192	0.27	76	EBR	C	33.7	0.204	0.30	84
EB Approach	D	42.8	-	-	-	EB Approach	D	37.2	-	-	-
WBT	D	53.6	0.720	0.00	260	WBT	E	69.1	0.876	0.00	380
WBR	D	37.9	0.349	0.00	150	WBR	C	34.8	0.286	0.00	118
WB Approach	D	47.3	-	-	-	WB Approach	E	59.1	-	-	-
NBL	B	16.2	0.408	0.13	59	NBL	C	27.5	0.456	0.13	59
NBT	F	52.4	1.028	0.73	1168	NBT	C	20.6	0.726	0.32	512
NBR	B	13.7	0.347	0.13	205	NBR	B	13.0	0.249	0.08	135
NB Approach	D	45.6	-	-	-	NB Approach	B	19.9	-	-	-
SBL	D	41.8	0.857	1.06	233	SBL	B	18.1	0.567	0.37	81
SBT	B	19.1	0.722	0.00	470	SBT	F	78.8	1.102	0.00	1303
SBR	A	9.7	0.042	0.00	20	SBR	B	10.9	0.061	0.00	30
SB Approach	C	21.1	-	-	-	SB Approach	E	73.2	-	-	-
Intersection	D	37.2	-	-	-	Intersection	D	51.1	-	-	-

In order to further improve the levels-of-service at intersection of US Route 23 and State Route 752 additional through lanes would likely be necessary. Due to the existing lane use and adjacent land uses any geometric improvements would be high cost and would likely impact the adjacent intersections and land uses. These type of improvements at the intersection would likely be unfeasible and therefore no further consideration to mitigating the levels of service will be given at this location.

Comparative Analysis

A comparison was performed to show the incremental effects on the capacity at the study area intersections due to the construction of the proposed development under the opening and design year conditions.

The following tables shows a side by side comparison of the Build versus No-Build conditions including improvements for the 2024 AM and PM peak hours at the study area intersections.

Table 4.16-2024 AM Peak Hour Comparison Table

	No-Build - AM		Build - AM No Improvement		Build - AM Improvement	
	LOS	Delay	LOS	Delay	LOS	Delay
\#1-US 23 \& SR 752						
EB	D	36.2	D	38.3	C	28.9
WB	D	38.1	D	43.8	D	35.3
NB	D	37.7	D	54.2	C	34.0
SB	B	16.2	C	20.9	C	21.0
Overall Int.	C	30.6	D	41.8	C	29.6
\#2 - SR 752 \& BUSINESS PLACE NORTH						
EBL	A	7.7	A	7.8		
WBL	A	7.7	A	7.8		
NB	B	11.3	B	14.1		
SB	A	9.4	A	9.5		
Overall Int.	--	--	--	--		
\#3 - SR 752 \& SR 316						
EB	C	25.0	C	25.7		
WB	C	24.2	C	25.0		
NB	C	24.8	C	24.8		
SB	C	20.9	C	21.6		
Overall Int.	C	23.3	C	24.2		

Table 4.17-2024 PM Peak Hour Comparison Table

	No-Build - PM		Build - PM No Improvement						Build - AM Improvement	
	LOS	Delay	LOS	Delay	LOS	Delay				
\#1 - US 23 \& SR 752	C									
EB	C	30.0	C	31.0	C	28.6				
WB	D	35.4	D	38.8	D	38.2				
NB	C	21.8	C	25.3	B	19.6				
SB	D	42.4	D	44.7	D	44.6				
Overall Int.	C	33.9	D	$\mathbf{3 6 . 6}$	C	34.4				

\#2 - SR 752 \& BUSINESS PLACE NORTH

EBL	A	7.8	A	7.8
WBL	A	7.9	A	8.2
NB	B	12.5	C	15.8
SB	B	12.5	B	14.9
Overall Int.	--	--	--	--

\#3 - SR 752 \& SR 316

EB	C	25.2	C	27.2
WB	C	24.8	C	27.7
NB	C	24.7	C	23.3
SB	C	25.8	C	26.7
Overall Int.	C	$\mathbf{2 5 . 2}$	C	$\mathbf{2 6 . 4}$

The following tables shows a side by side comparison of the Build versus No-Build conditions including improvements for the 2044 AM and PM peak hours at the study area intersections.

Table 4.18-2044 AM Peak Hour Comparison Table

	No-Build - AM		No-Build - AM Improvement		Build - AM No Improvement		Build - AM Improvement	
	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay
\#1-US 23 \& SR 752								
EB	D	45.8	D	38.7	D	37.8	D	42.8
WB	E	65.1	D	39.6	E	72.6	D	47.3
NB	F	87.9	D	38.7	E	71.6	D	45.6
SB	C	24.1	B	17.6	D	36.0	C	21.1
Overall Int.	E	62.4	C	31.4	E	58.0	D	37.2
\#2 - SR 752 \& BUSINESS PLACE NORTH								
EBL	A	7.9			A	7.9		
WBL	A	7.8			A	8.0		
NB	B	12.5			C	16.3		
SB	A	9.8			A	9.9		
Overall Int.	--	--			--	--		
\#3 - SR 752 \& SR 316								
EB	C	34.7			D	36.3		
WB	D	35.2			D	36.5		
NB	D	35.1			D	36.6		
SB	C	34.6			D	36.7		
Overall Int.	C	34.9			D	36.5		

Table 4.19-2044 PM Peak Hour Comparison Table

	No Build - PM		No-Build - PM Improvement		Build - PM No Improvement		Build - PM Improvement	
	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay
\#1-US 23 \& SR 752								
EB	C	33.9	D	38.8	C	34.8	D	37.2
WB	F	95.6	D	54.6	F	104.5	E	59.1
NB	C	31.1	B	19.8	C	24.0	B	19.9
SB	F	105.1	E	68.3	F	100.9	E	73.2
Overall Int.	E	74.5	D	48.4	E	70.6	D	51.1
\#2 - SR 752 \& BUSINESS PLACE NORTH								
EBL	A	8.0			A	8.1		
WBL	A	8.2			A	8.5		
NB	B	14.9			C	20.3		
SB	B	14.9			C	18.5		
Overall Int.	--	--			--	--		
\#3 - SR 752 \& SR 316								
EB	D	38.0			D	40.4		
WB	D	38.6			D	44.0		
NB	C	30.3			C	33.4		
SB	C	33.4			D	37.6		
Overall Int.	D	35.2			D	39.1		

4.2 Capacity \& LOS at Development Access Intersections

Capacity analyses were performed for the proposed site access driveway on State Route752. The procedures outlined in the computerized version of the Transportation Research Board's Highway Capacity Manual $\mathbf{7}^{\text {TH }}$ Edition ${ }^{(1)}$, (HCS2022, Release 8.1) were utilized for stop sign controlled intersections.

Build Condition - 2024 Capacity Analysis

Analyses were performed for the projected 2024 conditions under the Build scenario to determine the future levels-of-service at the intersection where site access is available. The analysis will be based on permitting all ingress and egress movements at the proposed access location. The traffic volumes used in this analysis can be seen in Figure 3.9, Appendix A. Copies of the capacity worksheets are included in Appendix M. The results of the 2024 Build analyses are shown in the following table.

Table 4.20-2024 Traffic Analysis Results
(SR 752 \& Proposed Access)

Access \#1	2024 AM Build Conditions			Minor Street Stop Control	Access \#1	2024 PM Build Conditions			inor Street top Control
SR 752 \& Access	LOS	Delay (sec/veh)	v/c	Q95 \%tile (Veh/Ln)	SR 752 \& Access	LOS	Delay (sec/veh)	v/c	$Q_{95} \%$ tile (Veh/Ln)
WBL	A	8.3	0.01	0.0	EBL	A	8.2	0.02	0.0
WB Approach	A	0.5	--	--	EB Approach	A	0.6	--	--
NBT	B	14.8	0.16	0.6	SBR	B	14.4	0.11	0.4
NB Approach	B	14.8	--	--	SB Approach	B	14.4	--	--

The capacity of the approaches and critical movements at the proposed access intersection along State Route 752 were found to be at a level-of-service B or better in the AM and PM peak hours.

Build Condition - 2044 Capacity Analysis

Analyses were performed for the projected 2044 conditions under the Build scenario to determine the future levels-of-service at the proposed intersection where site access is available. The analysis will be based on permitting all ingress and egress movements at the proposed access location. The traffic volumes used in this analysis can be seen in Figure 3.10, Appendix A. Copies of the capacity worksheets are included in Appendix N. The results of the 2044 Build analyses are shown in the following table.

Table 4.21-2024 Traffic Analysis Results
(SR 752 \& Proposed Access)

Access \#1	2044 AM Build Conditions			Minor Street Stop Control	Access \#1	2044 PM Build Conditions			Minor Street Stop Control
SR 752 \& Access	LOS	Delay (sec/veh)	v/c	$Q_{95} \%$ tile (Veh/Ln)	SR 752 \& Access	LOS	Delay (sec/veh)	v/c	Q $_{95} \%$ tile (Veh/Ln)
WBL	A	8.5	0.01	0.0	EBL	A	8.4	0.02	0.1
WB Approach	A	0.4	--	--	EB Approach	A	0.5	--	--
NBT	C	16.7	0.19	0.7	SBR	C	16.5	0.13	0.4
NB Approach	C	16.7	--	--	SB Approach	C	16.5	--	--

The capacity of the approaches and critical movements at the proposed access intersection along State Route 752 were found to be at a level-of-service C or better in the AM and PM peak hours.

4.3 Auxiliary Turning Lane Warrant Analysis

It is the intent of this report to evaluate the need for exclusive deceleration and turning lanes at the proposed State Route 752 access location based on the following conditions:

- Two-lane roadway
- \quad Posted speed limit of 55 miles per hour

The following table shows the results of the analysis of the need for exclusive deceleration and turn lanes on State Route 752 at the access driveway under the forecasted 2024 and 2044 Build conditions. Copies of the ODOT turn lane warrant graphs can be seen in Appendix 0.

Table 4.22 Turn Lane Warrants
(SR 752 \& Access Driveway)

State Route 752 @ Development Access Driveway	2024	2044		
Westbound Left Turn Lane	NO	PM	AM	PM
Eastbound Right Turn Lane	YES	YES	YO	YES

The results of the turn lane analyses indicate an exclusive westbound left turn lane on State Route 752 at the access driveway is warranted under the expected 2044 PM peak hour Build conditions.

The results of the turn lane analyses indicate that an exclusive eastbound right turn lane on State Route 752 at the access driveway is warranted under the expected 2024 and 2044 Build conditions.

4.4 Turn Lane Length Analysis

Analyses were performed to determine the necessary turn lane storage lengths in order to accommodate the recommended turns lanes and turn lanes found deficient in length at the study area intersections.

The calculations will be based on the Year 2044 peak hour Build conditions.

The turn lane calculations will be based on the following conditions:

US Route 23 \& State Route 752

- Traffic Control (Signalized)
- Design Speed >40 Miles Per Hour
- NB \& WB Right Turn Movement > 10\% of Approach Volume
= High Turn Demand Volume
- Condition B or C
- SB Right Turn Movement < 10\% of Approach Volume
= Low Turn Demand Volume
- Condition B

State Route 752 \& SR 316/Ashville Pike

- Traffic Control (Signalized)

■ Design Speed < 40 Miles Per Hour

- Condition A

State Route 752 \& Proposed Access Driveway

- Traffic Control (Un-Signalized)

■ Design Speed >40 Miles Per Hour
■ WB Left Turn Movement < 10\% of Approach Volume
= Low Turn Demand Volume

- Condition B

■ EB Right Turn Movement > 10\% of Approach Volume
= High Turn Demand Volume

- Condition B or C

The following tables details the results of the turn lane length analyses based upon the highest anticipated turn volumes at the intersections under the expected 2044 Build peak hour conditions.

Table 4.23 Turn Lane Length Analysis
(US Route 23 \& SR 752)

Movement Direction	DHV	No. of Lanes	Cycles Hour Horage Veh/ Cycle/ Lane	Design Speed (mph)	Fig.401- 10 Storage Length (ft)	Fig. 401-9 Condition	Backup Length (ft)	Turn Lane Length* (ft)		
SB T	2067	2	30	34.45	60	1125			1125	
SB RT	55	1	30	1.83	60	100	345			800^{*}
NB T	1797	2	30	29.95	60	975			975	
NB RT	293	1	30	9.77	60	375	345	560		800^{*}
WB RT	121	2	30	2.02	60	150	345	335		375^{*}
WB T/LT	277	1	30	9.23	60	375			375	

* Includes 50' Taper

Table 4.24 Turn Lane Length Analysis
(SR 752 \& SR 316/Ashville Pike)

Movement Direction	DHV	No. of Lanes	Cycles Hour Hour	Average Veh/ Cycle/ Lane	Design Speed (mph)	Fig.401- 10 Storage Length (ft)	Fig.401-9 Condition	Backup Length (ft)	Turn Lane Length* (ft)
SB LT	260	1	30	8.67	35	350	400		600^{*}
SB T/R	526	1	30	17.53	35	625		625	

Table 4.25 Turn Lane Length Analysis
(SR 752 \& Proposed Driveway)

Movement	DHV	No. of Lanes Direction	Cycles / Hour	Average Veh/ Cycle/ Lane	Design Speed (mph)	Fig.401- 10 Storage Length (ft)	\mathbf{B}^{*}	\mathbf{C}^{*}	Fig.401-9 Condition	Backup Length (ft)
WB LT	17	2	30	0.28	60	50	345		Turn Lane Length* (ft)	
EB RT	62	1	30	2.07	60	100	345	285		345^{*}

* Includes 50' Taper

4.5 Improvements to Accommodate Study Area Traffic

Recommended Improvements to Serve Future Conditions without the Development

The following improvements are recommended to improve the levels-of-service under the 2024 NoBuild conditions at the study area intersections.

SR 752 and SR 316/Ashville Pike (Village of Ashville)
■ Extend the length of the southbound left turn lane (600').

Recommended Improvements to Mitigate the Traffic Associated with the Development

The following improvements are recommended to improve the levels-of-service under the 2024 Build conditions at the study area intersections.

US Route 23 and SR 752 (ODOT)
■ Construct a northbound right turn lane (800').

2024 Development Access Recommendations

The following lane use and traffic control is recommended at the intersections where access to the site is proposed.

State Route 752 \& Proposed Site Access Driveway (Village of Ashville)

- Construct an exclusive eastbound right turn lane (345') for the opening year of the development.
- Construct the proposed south approach with one egress lanes and one ingress lane.
- Install stop sign control on the northbound approach.

2044 Development Access Recommendations

The following lane use and traffic control is recommended at the intersections where access to the site is proposed.

State Route 752 \& Proposed Site Access Driveway (Village of Ashville)

- Construct an exclusive westbound left turn lane (345') in the opening year of the development.

The recommended lane use and traffic control for the study area to accommodate expected traffic volumes can be seen in Figure 4.1, Appendix A.

Chapter 5

Conclusions

Based on the results of the analyses, we offer the following conclusions and recommendations:
5.1 This Traffic Impact Study (TIS) has been prepared at the request of Poggemeyer Design Group for a proposed DHL facility. The proposed development is located in the Village of Ashville, Pickaway County, Ohio.
5.2 The development is expected to consist of a single 545,200 square foot building. The proposed building is located along the south side of State Route 752 to the east of US Route 23 and to the west of Business Place North. The building and site is expected to accommodate land uses related to commerce and fulfillment operations.
5.3 The year 2024 was analyzed for the opening year conditions of the development based on the expected development time line.
5.4 The development is proposed with two access locations. The project proposes an intersection along State Route 752 that would provide full access to the site. A second access location is proposed along Business Place North.
5.5 A Traffic Volume Forecast was previously prepared for use in this Traffic Impact Study. The development and submission of the traffic volume forecasts for the proposed project are intended to follow the TIS Review Process detailed in Section 9.32 and the TIS Flow Chart shown Figure 9.1 of the ODOT State Highway Access Management Manual (7). A copy of the July 18, 2022 Traffic Volume Forecast report can be seen in Appendix A.
5.6 The project has significantly changed to include only one proposed building since the completion of the July 18, 2022 Traffic Volume Forecast. The traffic volume forecast was updated within this TIS per the procedures, guidelines, and assumptions that were made in the July 18, 2022 forecast document.
5.7 The weekday peak hours of traffic for the study area roadways were based on the traffic data collected for this report. The weekday AM peak hour of traffic was determined to be 7:00 AM to 8:00 AM. The weekday PM peak hour of traffic was found to be 3:45 PM to 4:45 PM. These periods were analyzed since they reflect the period of the highest volume of traffic flow for the study area roadways.
5.8 The proposed development is expected to generate the following hourly traffic volumes during the peak periods as shown in the table below:

OPENING YEAR	SIZE	TRIP ENDS							
		Weekday Peak Hour Between 7-9 AM				Weekday Peak Hour Between 4-6 PM			
		ENTER		EXIT		ENTER		EXIT	
		Vehicles	Trucks	Vehicles	Trucks	Vehicles	Trucks	Vehicles	Trucks
2024	545,200 SF	103	15	102	15	139	10	66	10
TOTAL NEW TRIPS		118		117		149		76	
		235				225			

5.9 The year 2044 was forecasted for the twenty year design hour conditions in the July 18, 2022 forecast document. The year 2044 will continued to be used for the design year in order to provide a conservative analysis of the expected future conditions in the study area and to provide consistency with the previously prepared forecast document.
5.10 The following improvements are recommended to improve the levels-of-service under the 2024 No-Build conditions at the study area intersections.

SR 752 and SR 316/Ashville Pike (Village of Ashville)

- Extend the length of the southbound left turn lane (600').
5.11 The following improvements are recommended to improve the levels-of-service under the 2024 Build conditions at the study area intersections.

US Route 23 and SR 752 (ODOT)

- Construct a northbound right turn lane (800').
5.12 The following lane use and traffic control is recommended at the intersection where access to the site is proposed.

State Route 752 \& Proposed Site Access Driveway (Village of Ashville)

- Construct an exclusive eastbound right turn lane (345') for the opening year of the development (2024 Build).
- Construct an exclusive westbound left turn lane (345') in the opening year of the development (2024 Build).
- Construct the proposed south approach with one egress lanes and one ingress lane (2024 Build).
- Install stop sign control on the northbound approach (2024 Build).
5.13 Based upon the results of the analysis in this study and the corresponding recommendations, it can be seen that the development traffic can be accommodated without adversely impacting the area roadway network.

Appendix A

Figures

Appendix B

Traffic Volume Forecast - July 18, 2022

TMS Engineers, Inc.

DHL Facility

Village of Ashville, Ohio

April 1, 2022
May 4, 2022
June 30, 2022
REVISED
July 18, 2002

Prepared for:

Poggemeyer Design Group, Inc.
101 Clinton Street
Defiance, Ohio 43512

TRAFFIC VOLUME FORECAST

DHL Facility

Village of Ashville, Ohio

April 1, 2022
May 4, 2022
June 30, 2022
REVISED
July 18, 2022

Prepared For:
Poggemeyer Design Group, Inc.
101 Clinton Street
Defiance, Ohio 43512

Prepared By:

TMS Engineers, Inc.
2112 Case Parkway South
Unit \#7
Twinsburg, Ohio 44087

Table of Contents

Chapter 1 Introduction 1-3
1.1 Purpose of the Report 1
1.2 References 3
Chapter 2 Area Conditions 4-10
2.1 Transportation Network Study Area 4
2.2 Functional Classification 6
2.3 Traffic 8
Chapter 3 Projected Traffic Conditions $11-30$
3.1 Site Traffic 11
3.2 Adjusted Traffic 20
3.3 Non-Site Traffic 22
3.4 Future Traffic 28

Appendices

Appendix A - Traffic Volume Figures
Appendix B - Collected Traffic Count Data
Appendix C - Development Trip Generation Data
Appendix D - ODOT COVID-19 Calibration Guidelines
Appendix E- ODOT Historical Traffic Data
Appendix F - Sheetz TIS Trip Generation Figures
Appendix G - US23/SR316 Development TIS Trip Generation Figures
Appendix H - MORPC Growth Rate Correspondence
Appendix I - ODOT Peak Hour to Design Hour Chart
Appendix J - Background Traffic Volume Forecast Calculations

List of Figures

APPENDIX

Figure 1.1 Project Location Map A
Figure 1.2 Site Plan A
Figure 2.1 Traffic Count Locations A
Figure 2.2 Aerial View A
Figure 2.3 Existing Conditions Lane Use \& Traffic Control A
Figure 2.4 Functional Classification A
Figure 2.5 Existing 2022 Weekday Peak Hour Traffic Volumes A
Figure 3.12024 Directional Distribution New Generated Vehicle Traffic A
Figure 3.2 2024 Directional Distribution New Generated Truck Traffic A
Figure 3.3 2030/2044 North Directional Distribution New Generated Vehicle Traffic A
Figure 3.4 2030/2044 North Directional Distribution New Generated Truck Traffic A
Figure 3.5 2030/2044 South Directional Distribution New Generated Vehicle Traffic A
Figure 3.6 2030/2044 South Directional Distribution New Generated Truck Traffic. A
Figure 3.72024 New Generated Vehicle Traffic A
Figure 3.8 2024 New Generated Truck Traffic A
Figure 3.9 2030/2044 North New Generated Vehicle Traffic A
Figure 3.10 2030/2044 North New Generated Truck Traffic. A
Figure 3.11 2030/2044 South New Generated Vehicle Traffic A
Figure 3.12 2030/2044 South New Generated Truck Traffic A
Figure 3.13 Sheetz New \& Pass-by Generated Traffic. A
Figure 3.14 US23/SR316 Development Opening Year Generated Traffic A

List of Figures

APPENDIX

Figure 3.15 US23/SR316 Development Design Year Generated Traffic A
Figure 3.162024 No-Build Peak Hour Traffic Volumes W/OUT Additional Developments A
Figure 3.172030 No-Build Peak Hour Traffic Volumes W/OUT Additional Developments A
Figure 3.182044 No-Build Peak Hour Traffic Volumes W/OUT Additional Developments A
Figure 3.192024 No-Build Peak Hour Traffic Volumes WITH Additional Developments A
Figure 3.202030 No-Build Peak Hour Traffic Volumes WITH Additional Developments A
Figure 3.212044 No-Build Peak Hour Traffic Volumes WITH Additional Developments A
Figure 3.222024 Build Peak Hour Traffic Volumes A
Figure 3.23 2030 Build Peak Hour Traffic Volumes A
Figure 3.242044 Build Peak Hour Traffic Volumes A

List of Tables

Table-1.1 Development Details 1
Table-2.1 Roadway Characteristics 5
Table-2.2 Functional Classification 7
Table-2.3 AM Peak Hour Traffic Volumes 9
Table-2.4 PM Peak Hour Traffic Volumes 9
Table-3.1 Development Summary 11
Table-3.2 Vehicle Trip Rate Calculation 12
Table-3.3 New Trip Summary 13
Table-3.4 AM New Trip Origins \& Destinations (2024 Opening Year) 14
Table-3.5 PM New Trip Origins \& Destinations (2024 Opening Year) 15
Table-3.6 AM New Trip Origins \& Destinations (2030/2044 Build/Design Year) 15
Table-3.7 PM New Trip Origins \& Destinations (2030/2044 Design Year) 16
Table-3.8 COVID Adjustment Factor 21
Table-3.9 Growth Rates \& Factors 24
Table-3.10 Peak Hour to Design Hour Factors 26
Table-3.11 Intersection Peak Hour Factors 27

Chapter 1
 Introduction

1.1 Purpose of Report

This traffic volume forecast has been prepared at the request of the Poggemeyer Design Group, Inc. for a Traffic Impact Study that will be prepared for a proposed DHL facility. The development and submission of the traffic volume forecasts for the proposed project are intended to follow the TIS Review Process detailed in Section 9.32 and the TIS Flow Chart shown Figure 9.1 of the ODOT State Highway Access Management Manual ${ }^{(7)}$.

The proposed development is located in the Village of Ashville, Pickaway County, Ohio. Figure 1.1, Appendix A details the development location.

The development is expected to consist of an industrial park type development. The site is expected to accommodate land uses related to commerce and fulfillment operations. The following table details the proposed buildings, the development schedule, and building sizes:

Table 1.1 - Development Details

BUILDING $\#$	LOCATION	OPENING YEAR	SIZE (Square Feet)
$\# 1$	North of SR 752	2024	$1,006,880$
$\# 2$	North of SR 752	2025	793,440
$\# 3$	North of SR 752	2026	$1,006,880$
$\# 4$	South of SR 752	2027	572,460
$\# 5$	South of SR 752	2028	$1,006,880$
$\# 6$	South of SR 752	2029	$1,006,880$
		2030	T0TAL
			$5,911,360$

The year 2024 with Building \#1 will be analyzed for the opening year conditions of the development based on the expected time line. The development is currently expected to reach full build out of the seven buildings in the year 2030. The year 2030 will be analyzed for the full build conditions, the build year. The design year for the proposed project will be based on the opening year and the expected volume of new site generated traffic under the full build condition of the seven buildings.

Buildings \#1-\#3 are located north of State Route 752 and to the east of US Route 23. Buildings \#4 \#7 are located between State Route 752 to the north and State Route 316 to the south and east of US Route 23.

The development is proposed with two access locations. The project proposes an intersection along State Route 752 that would provide full access to the portions of the development along the north and south side of State Route 752. A second full access intersection is proposed along State Route 316 and would provide direct access to the south side of the development and a connection to the proposed intersection at State Route 752. Figure 1.2, Appendix A shows the proposed development site plan.

It should noted that the site plan shown in Figure 1.2 details two additional access driveways with one each along State Route 752 and State Route 316. These driveways will not provide ingress/egress to the building sites and will not be constructed as part of the proposed project.

1.2 References

The following list of references may be utilized for this report and the forecasts contained within it:

1. Highway Capacity Manual, 7th Edition, Transportation Research Board of the National Academies, Washington, D.C.
2. Ohio Manual of Uniform Traffic Control Devices for Streets and Highways, 2012 Edition. Ohio Department of Transportation, Office of Traffic Engineering, Columbus, Ohio.
3. Location and Design Manual, Volume 1, Roadway Design. Ohio Department of Transportation, Office of Roadway Engineering, Columbus, Ohio.
4. Ohio Traffic Forecasting Manual, Volume 1, Traffic Forecasting Background. Ohio Department of Transportation, Office of Statewide Planning \& Research, Columbus, Ohio.
5. Ohio Traffic Forecasting Manual, Volume 2, Traffic Forecasting Methodologies. Ohio Department of Transportation, Office of Statewide Planning \& Research, Columbus, Ohio.
6. ODOT Analysis and Traffic Simulation Manual (OATS), Ohio Department of Transportation, Office of Roadway Engineering, Columbus, Ohio.
7. State Highway Access Management Manual, Ohio Department of Transportation, Office of Roadway Engineering, Columbus, Ohio.
8. Trip Generation Manual, $11^{\text {th }}$ Edition, September 2021, Institute of Transportation Engineers, (ITE), Washington, D.C.
9. Trip Generation Handbook, $3^{\text {rd }}$ Edition, September 2017, Institute of Transportation Engineers, (ITE), Washington, D.C.
10. Traffic Engineering Manual, October 23, 2002 Edition (Revised January 15, 2021), Ohio Department of Transportation, Office of Roadway Engineering, Columbus, Ohio.
11. A Policy on Geometric Design of Highways and Streets (Green Book), 7^{TH} Edition, September 2018, American Association of State Highway and Transportation Officials, Washington, D.C.
12. Access Management Manual, 2^{ND} Edition, 2014. Transportation Research Board of the National Academies, Washington, D.C.

Chapter 2

Area Conditions

2.1 Transportation Network Study Area

The study area for the proposed development includes the previously discussed development access locations as shown in Figure 1.2, Appendix A and the following intersections:

1. US Route 23 \& State Route 752/Rudi Lane
2. US Route 23 \& State Route 316/North Street
3. US Route 23 \& Northup Avenue/State Route 316
4. State Route 752 \& Ashville Pike
5. \quad State Route 316 \& Miller Avenue/County Road 28

Rudi Lane is proposed roadway that will be constructed as the west approach at the intersection of US Route 23 and State Route 752. The proposed roadway is part of the project to construct a Sheetz development at the intersection.

The Ohio Department of Transportation maintains the traffic signal control facilities at the intersections along US Route 23. The Village of Ashville maintains the traffic signal control facility at the intersection of State Route 752 and State Route 316/Ashville Pike.

A location map detailing the traffic count locations can be seen in Figure 2.1, Appendix A..

The following table details the primary characteristics of the study area roadways:

Table 2.1 Roadway Characteristics

ROADWAY	$\begin{gathered} \# \\ \text { LANES } \end{gathered}$	ORIENTATION	SPEED LIMIT (MPH)	
			POSTED	DESIGN
US Route 23 @ SR 752	4	North-South	50	55
US Route 23 @ SR 316 (North)	4	North-South	35	35
US Route 23 @ SR 316 (South)	4	North-South	50	35
Ashville Pike	2	North-South	35	35
Miller Avenue	2	North-South	25	25
County Road 28	2	North-South	55	60
State Route 752 @ US 23	2	East-West	55	60
State Route 752 @ Proposed Access	2	East-West	55	60
State Route 752 @ Ashville Pike	2	East-West	35	35
State Route 316 (West of US 23)	2	East-West	35	35
State Route 316 (East of US 23)	2	East-West	35	35
State Route 316 @ Proposed Access	2	East-West	55	60
State Route 316 @ CR 28	2	East-West	35	35
Rudi Lane	2	East-West	25	25
North Street	2	East-West	25	25
Northup Avenue	2	East-West	25	25

An aerial view of the of the study area can be seen in Figure 2.2 Appendix A.

Figure 2.3, Appendix A shows the lane use and traffic control conditions based upon the existing conditions in the study area. These will be considered the existing base conditions for this report.

2.2 Functional Classification

The Ohio Department of Transportation functionally classifies roadways to help define a roadway's characteristics as well as identify roadways that are eligible for federal funds. Functional classification is the grouping of roads, streets, and highways in a hierarchy based on the type of highway service they provide. Generally, streets and highways perform two types of service. They provide either traffic mobility or land access and can be ranked in terms of the proportion of service they provide.

The functional classification as determined by ODOT will be used in this report to apply growth and design hour factors to the study area roadways for use in forecasting the future traffic volumes in the study area. These factors are determined using data, guidelines, and methodology supplied by ODOT. These methods and the corresponding data are based on the roadways assigned functional classification. The ODOT methods for forecasting future traffic volumes are a recognized traffic engineering standard.

Roadways that are not listed as having a functional classification can be assigned into one of two categories. The first category is a local roadway and the second category is that of an access drive.

The ODOT functional classification of the roadways in the study area can currently be found using the ODOT Transportation Information Mapping System (TIMS). TIMS is ODOT's web-mapping portal where information about Ohio's transportation system can be found. TIMS can currently be found at the following web address:
https://gis.dot.state.oh.us/tims/

The following table lists the study area roadways that have an assigned functional classification as determined by ODOT and local government entities.

Table 2.2 Functional Classification

ROADWAY	AREA	FC \#
US Route 23	Urban	3
CLASSIFICATION		
State Route 752	Urban	5
Principal Arterial		
State Route 316 (West of US 23)	Urban	5
State Route 316 (East of US 23)	Urban	5
State Route 316 (Long Street)	Urban	5
Ashville Pike	Urban	7
Miller Avenue	Urban	7
County Road 28	Major Collector	
Rudi Lane	Urban	7
North Street	Urban	7
Northup Avenue	Urban	7
Local Roadway		
Local Roadway		
Local Roadway		
Loar Roadway		

Figure 2.4, Appendix A illustrates the section of the functional classification map for the study area.

2.3 Traffic

Weekday Peak Hours

Weekday nine hour turning movement counts were performed between Wednesday, February 16, 2022 and Thursday, March 3, 2022 at the following intersections:

1. US Route 23 \& State Route 752 (Thursday, 2/17/2022)
2. US Route 23 \& State Route 316/North Street (Wednesday, 3/2/2022)
3. US Route 23 \& Northup Avenue/State Route 316 (Tuesday, 3/1/2022)
4. State Route 752 \& Ashville Pike (Wednesday, 2/16/2022)
5. State Route 316 \& Miller Avenue/County Road 28 (Thursday, 3/3/2022)

The weekday traffic counts were conducted in fifteen (15) minute intervals between the hours of 7 AM 10 AM, 11 AM - 2 PM, and 3 PM - 6 PM, then hourly totals were calculated. Copies of the intersection turn movement counts are included in Appendix B. Average daily traffic was calculated for the roadways using expansion factors to account for daily and seasonal variations according to the recommendations and latest data from the Ohio Department of Transportation.

The AM and PM intersection peak hours are selected by reviewing data in 15-minute intervals. When there is more than one intersection within the study area, a consistent time period should be used for all intersections within the study area in order to develop an existing conditions traffic volume set, the system peak hour. The following questions should be considered when choosing the peak hours for a study area with multiple intersections:

■ What are the individual intersection peak hours?
■ Are the individual peak hours the same time or close to each other?
■ Would it result in significantly fewer vehicles to use a different peak hour for intersections that are not the same?

- What is the peak hour for intersections with the highest overall volume?

■ What peak hour contributes the highest volume to the entire system?

The use of summary tables for the entering traffic volumes during the AM and PM time periods are used to evaluate the previously discussed questions, to identify the peak hours for each intersection, and to determine the peak hour of the system.

The following tables detail a breakdown of the hourly volumes during the AM and PM hours that were determined to experience the highest traffic volumes.

Table 2.3 AM Peak Hour Traffic Volumes
(Total Entering Volume - Vehicles per Hour)

	HOUR BEGINS									
	$\mathbf{7 : 0 0}$	$\mathbf{7 : 1 5}$	$\mathbf{7 : 3 0}$	$\mathbf{7 : 4 5}$	$\mathbf{8 : 0 0}$	$\mathbf{8 : 1 5}$	$\mathbf{8 : 3 0}$	$\mathbf{8 : 4 5}$	$\mathbf{9 : 0 0}$	
US23 \& SR752	$\mathbf{2 3 7 6}$	2276	2085	2018	1973	1936	1903	1826	1756	
US23 \& SR316 (N)	$\mathbf{2 5 2 7}$	2433	2278	2114	1983	1889	1843	1821	1821	
US23 \& SR 316 (S)	$\mathbf{2 5 1 3}$	2385	2340	2183	2126	2021	1887	1869	1806	
SR752 \& Ashville Pike	$\mathbf{8 7 4}$	781	560	497	507	510	507	469	432	
SR316 \& CR 28	$\mathbf{3 6 7}$	331	337	340	337	327	314	289	294	
TOTAL	$\mathbf{8 6 5 7}$	8206	7600	7152	6926	6683	6454	6274	6109	

Table 2.4 PM Peak Hour Traffic Volumes
(Total Entering Volume - Vehicles per Hour)

	HOUR BEGINS								
	3:00	3:15	3:30	3:45	4:00	4:15	4:30	4:45	5:00
US23 \& SR752	2492	2571	2597	2599	2584	2570	25941	2534	2467
US23 \& SR316 (N)	2662	2772	2884	2914	2954	2892	2876	2782	2684
US23 \& SR 316 (S)	2692	2822	2961	3026	2951	3018	2978	2968	2890
SR752 \& Ashville Pike	825	886	990	1072	1094	1083	1000	912	853
SR316 \& CR 28	502	524	531	535	537	530	533	514	501
TOTAL	9173	9575	9963	10146	10120	10093	33328	9710	9395

Based on the collected traffic data, the peak hours for the study area were determined based on the AM and PM hour experiencing the highest total volume indicated in red in the previous tables. The weekday AM peak hour of traffic was determined to be 7:00 AM to 8:00 AM. The weekday PM peak hour of traffic was found to be $3: 45$ PM to 4:45: PM. These periods will be used to forecast expected and future traffic volumes since they reflect the period of the highest volume of vehicular traffic flow for the study area roadways on a weekday.

The existing AM and PM peak hour traffic volumes are shown in Figure 2.5, Appendix A.

It should be noted that it may be necessary to adjust these volumes due to the effects of the COVID-19 pandemic. The ODOT guidance and procedures will be used to determine any necessary adjustments.

Chapter 3

Projected Traffic Conditions

3.1 Site Traffic

Trip Generation

Calculating future total driveway trips requires an estimate of the traffic generated by the proposed development. The most widely accepted method of determining the amount of traffic that the proposed development will generate is to compare the proposed land use with existing facilities of the same use. The Institute of Transportation Engineers (ITE) has prepared a manual titled "Trip Generation Manual" ${ }^{(8)}$, which is a compilation of similar traffic generation studies to aide in making such a comparison. The most recent update of this manual is the 11^{TH} edition and was utilized for this study.

The ITE Trip Generation Manual ${ }^{(8)}$ will be used in conjunction with available site specific data provided by DHL in order to forecast the expected development site generated traffic. Site generated traffic will be prepared for passenger vehicle (vehicle) type traffic and truck (truck) traffic.

The following table details a breakdown of the buildings that are expected to occupy the development site:

Table 3.1 Development Summary

BUILDING \#	BUILDING LOCATION	OPENING YEAR	SIZE (Sq Ft)
$\# 1$	North of SR 752	2024	$1,006,880$
$\# 2$	North of SR 752	2025	793,440
$\# 3$	North of SR 752	2026	$1,006,880$
$\# 4$	South of SR 752	2027	572,460
$\# 5$	South of SR 752	2028	$1,006,880$
$\# 6$	South of SR 752	2029	$1,006,880$
$\# 7$	South of SR 752	2030	517,940
			TOTAL
			$\mathbf{5 , 9 1 1 , 3 6 0}$

The developer provided an overview of the their North American facility operations. The overview showed that for buildings over 400,000 square feet that the 90% are operating 2 or 3 shift operations. The overview also provided a total headcount for each of the sectors that are served at the facilities. The sectors for the AM and PM peak hour vehicle traffic were determined to be the five highest. A copy of the facilities overview can be seen in Appendix C.

In order to determine the volume of expected site generated vehicle traffic a weighted average of the total headcount for the 5 largest sectors was calculated. It was assumed for the purpose of this report that one employee was equal to one trip in the peak hour due to the shift operations. The following table details the calculation of the site generated trip rate that will be used to forecast the volume of vehicle generated traffic by each building in the development:

Table 3.2 Vehicle Trip Rate Calculation

SECTOR	HEADCOUNT per 100,000 sf	WEIGHTED AVERAGE	WEIGHTED VALUE
Automotive	24	15.00%	3.600
Consumer	20	12.50%	2.500
Retail	51	31.88%	16.256
Technology	45	28.13%	12.656
Life Science/Healthcare	$\mathbf{2 0}$	$\mathbf{1 6 0}$	2.50%
TOTAL	$\mathbf{1 6 0}$	$\mathbf{3 7 . 5 1 3}$	

The weighted average should provide a conservative estimate of future traffic as the sectors being served at each building are currently unknown.

A rate of 37.5125 trips per 100,000 square foot will be applied to each building in the development in order to determine the peak hour site generated trips based on the results shown above in Table 3.2.

The peak hour site generated trips will be split in to entering and exiting trips based on the peak hour directional distributions provided for land use \#156-High Cube Parcel Hub Warehouse from the ITE Trip Generation Manual ${ }^{(8)}$.

The developer provided the expected facility truck volumes from the consumer and ecommerce sectors. These sectors were selected as they provide the highest peak hour volume of truck traffic at DHL facilities and should provide a conservative estimate of the expected truck volumes during the AM and PM peak hours. These truck volumes were applied to the each of the proposed buildings based on the square footage of each. A copy of the provided truck data can be seen in Appendix C.

Trip generation calculations for the development were performed utilizing the supplied site specific data for vehicle and truck trips as well as data contained in the Trip Generation Manual ${ }^{(8)}$ and the methods outlined in the (ITE) Trip Generation Handbook ${ }^{(9)}$. A spreadsheet detailing the vehicle trip generation calculations can be found in Appendix C. The following table details the site generated vehicle and truck traffic volumes for each building in the proposed development.

Table 3.3 New Trip Summary

BUILDING	OPENING YEAR	SIZE	TRIP ENDS							
			WeekdayBetweeENTER		Peak Hour 7-9 AM		Weekday Peak Hour Between 4-6 PM			
					EXIT		ENTER		EXIT	
			Vehicles	Trucks	Vehicles	Trucks	Vehicles	Trucks	Vehicles	Trucks
1 (North of SR 752)	2024	$\begin{gathered} 1,006,880 \\ \mathrm{SF} \end{gathered}$	189	25	189	25	257	18	121	18
2 (North of SR 752)	2025	$\begin{gathered} 793,440 \\ \text { SF } \end{gathered}$	149	23	149	22	202	18	95	18
3 (North of SR 752)	2026	$\begin{gathered} \hline 1,006,880 \\ \mathrm{SF} \end{gathered}$	189	25	189	25	257	18	121	18
4 (South of SR 752)	2027	$\begin{gathered} 572,460 \\ \text { SF } \end{gathered}$	107	15	107	15	146	10	69	10
5 (South of SR 752)	2028	$\begin{gathered} \hline 1,006,880 \\ \mathrm{SF} \end{gathered}$	189	25	189	25	257	18	121	18
6 (South of SR 752)	2029	$\begin{gathered} \hline 1,006,880 \\ \mathrm{SF} \end{gathered}$	189	25	189	25	257	18	121	18
7 (South of SR 752)	2030	$\begin{gathered} 517,940 \\ \mathrm{SF} \end{gathered}$	97	15	97	15	132	10	62	10
TOTAL NEW TRIPS			1109	153	1109	152	1508	110	710	110
			1262		1261		1618		820	
			2523				2438			

The ODOT State Highway Access Management Manual ${ }^{(7)}$ requires that ten year design hour traffic volumes be analyzed for a proposed development when the number of generated trips is below 500 in the peak hour and twenty year design hour traffic volumes when the number of generated trips is greater than 500 in the peak hour.

The proposed development is expected to generate a total of 2,523 driveway trips in the AM peak hour and a total of 2,438 driveway trips in the PM peak hour. The year 2044 will therefore be analyzed for the twenty year design hour conditions.

Distribution of New Site Generated Weekday Traffic

Separate directional distributions will be prepared for passenger vehicle (vehicle) type traffic and truck (truck) traffic.

The directional distribution for the new generated vehicle traffic is a function of the prevailing operating conditions on the existing roadways. The distribution pattern that was assumed is shown in the tables that follow and is based upon engineering judgement of the existing traffic volumes entering the study area at the five study area intersections during the AM and PM peak hours shown in Figure 2.5, Appendix A, the adjacent land uses, functional classification of the roadways, and routes to avoid known areas of congestion. The vehicle trips were assumed to be primary trips made by people leaving home for work and then returning home. The vehicle trips were therefore assumed to enter and exit the study using the same route.

The following tables detail the distribution of the new generated vehicle trips for the proposed development under the opening and design year conditions.

Table 3.4 AM New Trip Origins and Destinations
2024 Opening Year

ORIGIN/ DESTINATION	ROUTE	ENTER \% TOTAL	ENTER NEW TRIPS	EXIT \% TOTAL	EXIT NEW TRIPS
North	US 23	20%	38	20%	38
South	US 23	30%	56	30%	56
East	SR 752	20%	38	20%	38
West	SR 316	10%	19	10%	19
North	Ashville Pike	10%	19	10%	19
East	SR 316	10%	19	10%	19
	TOTALS	$\mathbf{1 0 0 \%}$	$\mathbf{1 8 9}$	$\mathbf{1 0 0 \%}$	$\mathbf{1 8 9}$

Table 3.5 PM New Trip Origins and Destinations
2024 Opening Year

ORIGIN/ DESTINATION	ROUTE	ENTER \% TOTAL	ENTER NEW TRIPS	EXIT \% TOTAL	EXIT NEW TRIPS
North	US 23	20%	51	20%	24
South	US 23	20%	52	20%	25
East	SR 752	20%	51	20%	24
West	SR 316	10%	26	10%	12
North	Ashville Pike	20%	51	20%	24
East	SR 316	10%	26	10%	12
	TOTALS	$\mathbf{1 0 0 \%}$	$\mathbf{2 5 7}$	$\mathbf{1 0 0 \%}$	$\mathbf{1 2 1}$

Table 3.6 AM New Trip Origins and Destinations
2030/2044 Build/Design Year

ORIGIN/ DESTINATION	ROUTE	ENTER \% TOTAL	ENTER NEW TRIPS	EXIT \% TOTAL	EXIT NEW TRIPS
North	US 23	20%	222	20%	222
South	US 23	30%	333	30%	332
East	SR 752	20%	221	20%	222
West	SR 316	10%	111	10%	111
North	Ashville Pike	10%	111	10%	111
East	SR 316	10%	111	10%	111
	TOTALS	$\mathbf{1 0 0 \%}$	$\mathbf{1 1 0 9}$	$\mathbf{1 0 0 \%}$	$\mathbf{1 1 0 9}$

Table 3.7 PM New Trip Origins and Destinations 2030/2044 Build/Design Year

ORIGIN/ DESTINATION	ROUTE	ENTER \% TOTAL	ENTER NEW TRIPS	EXIT \% TOTAL	EXIT NEW TRIPS
North	US 23	20%	302	20%	142
South	US 23	20%	302	20%	142
East	SR 752	20%	301	20%	142
West	SR 316	10%	151	10%	71
North	Ashville Pike	20%	301	20%	142
East	SR 316	10%	151	10%	71
	TOTALS	$\mathbf{1 0 0 \%}$	$\mathbf{1 5 0 8}$	$\mathbf{1 0 0 \%}$	$\mathbf{7 1 0}$

All truck traffic will enter and exit the development at the proposed intersection along State Route 752. Trucks will be prohibited from using the State Route 316 access location and exiting the site to the east along State Route 752 through the use of way finding signs both on-site and off-site.

The distribution of the truck traffic was based on the all trucks using US Route 23 to travel north or south. The trucks were split with 60% originating from and destined to the north. The remaining 40% were assumed to enter from or exit to the south. The distribution was based on the existing volume patterns on US Route 23, the location of Rickenbacker International Airport, and the location of the facility to the south of the greater Columbus area.

Distribution of Site Generated Traffic - 2024 Opening Year

The directional distribution for the new AM and PM peak hour generated vehicle traffic is shown graphically in Figure 3.1, Appendix A for the opening year conditions.

The directional distribution for the new AM and PM peak hour generated truck traffic is shown graphically in Figure 3.2, Appendix A for the opening year conditions.

Distribution of Site Generated Traffic - 2030/2044 Design Year

The distribution of new site generated vehicle traffic for the portion of the development north of State Route 752 was based on the following assumptions:

- Entering traffic would take the most direct route available to either the SR 752 or SR 316 access. It was assumed that traffic would use the on-site connector road to avoid the section of US 23 between SR 752 and SR 316.
- Exiting traffic would take the most direct route exit the study area using either the SR 752 or SR 316 access. It was assumed that traffic would use the on-site connector road to avoid the section of US 23 between SR 752 and SR 316.

The build and design year conditions directional distribution for the new AM and PM peak hour generated vehicle traffic is shown graphically in Figure 3.3, Appendix A for the portion of the development located to the north of State Route 752.

The design year conditions directional distribution for the new AM and PM peak hour generated truck traffic is shown graphically in Figure 3.4, Appendix A for the portion of the development located to the north of State Route 752.

The distribution of new site generated vehicle traffic for the portion of the development south of State Route 752 was based on the following assumptions:

- Entering traffic would take the most direct route available to either the SR 752 or SR 316 access. It was assumed that traffic would use the on-site connector road to avoid the section of US 23 between SR 752 and SR 316.
- Exiting traffic would take the most direct route exit the study area using either the SR 752 or SR 316 access. It was assumed that traffic would use the on-site connector road to avoid the section of US 23 between SR 752 and SR 316.

The design year conditions directional distribution for the new AM and PM peak hour generated vehicle traffic is shown graphically in Figure 3.5, Appendix A for the portion of the development located to the south of State Route 752.

The design year conditions directional distribution for the new AM and PM peak hour generated truck traffic is shown graphically in Figure 3.6, Appendix A for the portion of the development located to the south of State Route 752.

Assignment of Site Generated Traffic - 2024 Opening Year

Based upon the distribution patterns shown in Figure 3.1, the new AM and PM peak site generated vehicle traffic was assigned to the study intersections. The assignment of the estimated site generated new vehicle traffic for the proposed development under the opening year conditions is shown graphically in Figure 3.7, Appendix A.

Based upon the distribution patterns shown in Figure 3.2 , the new AM and PM peak site generated truck traffic was assigned to the study intersections. The assignment of the estimated site generated new truck traffic for the proposed development under the opening year conditions is shown graphically in Figure 3.8, Appendix A.

Assignment of Site Generated Traffic - 2030/2044 Design Year

Based upon the distribution patterns shown in Figure 3.3, the new AM and PM peak site generated vehicle traffic was assigned to the study intersections. The assignment of the estimated design year site generated new vehicle traffic for the portion of the development north of State Route 752 is shown graphically in Figure 3.9, Appendix A.

Based upon the distribution patterns shown in Figure 3.4, the new AM and PM peak site generated truck traffic was assigned to the study intersections. The assignment of the estimated design year site generated new truck traffic for the portion of the development north of State Route 752 is shown graphically in Figure 3.10, Appendix A.

Based upon the distribution patterns shown in Figure 3.5, the new AM and PM peak site generated vehicle traffic was assigned to the study intersections. The assignment of the estimated design year site generated new vehicle traffic for the portion of the development south of State Route 752 is shown graphically in Figure 3.11, Appendix A.

Based upon the distribution patterns shown in Figure 3.6, the new AM and PM peak site generated truck traffic was assigned to the study intersections. The assignment of the estimated design year site generated new truck traffic for the portion of the development south of State Route 752 is shown graphically in Figure 3.12, Appendix A.

3.2 Adjusted Traffic

The collected peak hour traffic volumes detailed in Appendix B and Figure 2.5, Appendix A should be reviewed to determine if they have been impacted due to the COVID-19 pandemic. The traffic volumes as they were collected may not be representative of a typical weekday under normal travel patterns and show less volume. The ODOT Modeling and Forecasting Section of the Office of Statewide Planning and Research has developed a process to calibrate counts that are artificially low due to the COVID-19 situation. An overview of the ODOT guidance and process can be seen in Appendix D. The development of calibration factors for the study area roadways is described in the following paragraphs.

The ODOT Traffic Monitoring Management System (TMMS) was first consulted to determine available Peak Hour and Average Daily Traffic along the study area roadways. The ODOT guidance indicates that only counts prior to March 15, 2020 are suitable for use in the calculation of adjustment factors.

Data from the following location will be used to determine if the collected data should be adjusted to account for the COVID-19 pandemic.

1. US Route 23 (North of SR 752) - Location ID 2765

Location 2765 is a continuous count station that provides daily historical traffic volumes. The location listed provides both ADT and hourly traffic data in 15 minute increments.

The corresponding peak hour data from this location will be used to determine if calibration factors are necessary for the AM and PM peak hours at the study area intersections. The traffic count data collected for this report was collected on February 20, 2022. This was the third Thursday in February. The ODOT historical ADT data from Thursday, February 20, 2022 will be compared to the Thursday, February 17, 2020 data Copies of the 2020 and 2022 historical data can be seen in Appendix E.

A calculated factor greater than 1.0 indicates that the 2022 volumes do not exceed the 2020 historical data, therefore a calibration factor is necessary to account for the impact of the COVID-19 pandemic.

A calculated factor of less than 1.0 indicates that the 2022 volumes exceed the 2020 historical data, therefore a calibration factor is not necessary to account for the impact of the COVID-19 pandemic.

The following table details the calculation of peak hour COVID adjustment factors for the study area roadways using the peak hour traffic volumes from the collected traffic data for this report and the 2019 historical data from the ODOT TMMS website:

Table 3.8 - COVID Adjustment Factor

LOCATION	TIME PERIOD	2020 PRE-COVID	2022 CURRENT	ADJUSTMENT FACTOR
US Route 23 (North of SR 72) ID 2765	ADT	28692	29633	0.9682

A COVID adjustment factor of 0.9682 indicates that the 2022 volumes exceed the 2020 historical data, therefore a calibration factor is not necessary to account for the impact of the COVID-19 pandemic on the collected traffic data.

3.3 Non-Site Traffic

Background Traffic Growth

Design of new roadways or improvements to existing roadways should not usually be based on current traffic volumes alone, but should consider future traffic volumes expected to make use of the facilities. Roadways should be designed to accommodate the traffic volume that is likely to occur within the design life of the facility. In a practical sense, this design volume should be a value that can be estimated with reasonable accuracy. It is believed that the maximum design period is in the range of 15 to 24 years. Therefore, a period of twenty years is widely used as a basis for design for large projects. A period of ten years is currently specified by the Ohio Department of Transportation for smaller projects. Traffic cannot usually be forecasted accurately beyond this period on a specific facility because of probable changes in the general regional economy, population, and land development along the roadway.

The ODOT State Highway Access Management Manual ${ }^{(7)}$ requires that opening year and ten year design hour traffic volumes be analyzed for a proposed development when the number of generated trips is less than 500 in the peak hour.

The year 2044 (Design Year) will be analyzed for the proposed development as the peak hour site generated traffic volumes are greater than 500 trips. Therefore, it is necessary to estimate historical growth rates in order to establish the future traffic on the study area roadways due to non-site related conditions.

Roadways, like those found in the study area, carry a significant amount of through traffic due to their functional characteristics. This through traffic component generally increases as regional growth occurs. Therefore, it is anticipated that existing traffic on these roadways may increase in future years.

The Mid-Ohio Regional Planning Commision (MORPC) was contacted in order to determine appropriate growth rates for the study area roadways. MORPC provided linear annual growth rates for the approaches at the study area intersections. A copy of the email correspondence regarding growth rates for the study area can be seen in Appendix \mathbf{H}.

The growth rate and factors for they study area can be seen in the following table:

Table 3.9-Growth Rate \& Factors

APPROACH/LOCATION	GROWTH RATE (Annual Growth)	GROWTH FACTORS		
		2024	2030	2044
SR 752 East @ US 23	2.00\%	1.040	1.160	1.440
US 23 North @ SR 752	0.90\%	1.018	1.072	1.198
US 23 South @ SR 752	0.90\%	1.018	1.072	1.198
US 23 North @ SR 316	0.90\%	1.018	1.072	1.198
SR 316 West @ US 23	1.60\%	1.032	1.128	1.352
US 23 South @ SR 316	0.90\%	1.018	1.072	1.198
SR 316 East @ US 23	2.00\%	1.040	1.160	1.440
US 23 North @ SR 316	1.00\%	1.020	1.080	1.220
Northup West @ US 23	2.00\%	1.040	1.160	1.440
US 23 South @ SR 316	0.90\%	1.018	1.072	1.198
SR 752 East @ Ashville Pike	2.00\%	1.040	1.160	1.440
Ashville Pike North @ SR 752	2.20\%	1.044	1.176	1.484
SR 752 West @ Ashville Pike	2.00\%	1.040	1.160	1.440
Long South @ SR 752	2.20\%	1.044	1.176	1.484
SR 316 East @ CR 28	2.00\%	1.040	1.160	1.440
SR 316 West @ CR 28	2.00\%	1.040	1.160	1.440

The study area intersection approaches that did not have a growth rate supplied by MORPC will not have a growth factor applied to the existing traffic volumes.

Design Hour Traffic

The traffic patterns on any roadway typically show considerable variation in the traffic volumes experienced during the various hours of the day and in the hourly volumes experienced throughout the year. A key decision in the design process involves determining which of these hourly traffic volumes should be used as the basis for the design.

It would be wasteful to predicate a design on the maximum peak hour traffic that occurs during the year and the use of the average hourly traffic would result in an inadequate design. The hourly traffic volumes used in a design should not be exceeded very often or by very much. However, the hourly traffic volumes should not be so high that traffic would rarely be sufficient to make full use of the designed facility.

Normal design policy in the State of Ohio is based upon a review of curves that depict the variation in hourly traffic volumes during the year. The Ohio Department of Transportation recommends using the 30^{TH} highest hour as a design control for urban streets. There is typically very little difference between the volumes in this range. The Ohio Department of Transportation provides factors or a methodology to determine factors that are applied to counted daily traffic volumes to determine appropriate design hour traffic volumes.

Following guidelines set forth in the ODOT State Highway Access Management Manual ${ }^{(7)}$, all analyses are required to examine the design hour volume for the adjacent roadway and peak hour traffic volume of the proposed development. The Ohio Traffic Forecasting Manual ${ }^{(4,5)}$ will be used to determined peak hour factors for the study area roadways.

The design hour volumes are determined by multiplying the AM and PM peak hour volumes by the appropriate factors from the ODOT Peak Hour to Design Hour Factor Report based on the functional classification of the roadway, the day of the week and the month that the traffic data was collected. A copy of the ODOT's Peak Hour to Design Hour Factor Report can be seen in Appendix I.

The following table details the peak hour to design hour factors for the study area roadways.

Table 3.10 - Peak Hour to Design Hour Factors

ROADWAY	AREA	FUNCTIONAL			
CLASSIFICATION	MONTH	DAY	DHV FACTOR		
US 23 @ SR 752	Urban	Principal Arterial	February	Thursday	1.16
SR 752 @ US 23	Urban	Major Collector	February	Thursday	1.16
US 23 @ SR 316	Urban	Principal Arterial	March	Wednesday	1.16
SR 316 @ US 23	Urban	Major Collector	March	Wednesday	1.16
North Street	Urban	Local Roadway	March	Wednesday	1.16
US 23 @ SR 316	Urban	Principal Arterial	March	Tuesday	1.16
US 316 @ US 23	Urban	Major Collector	March	Tuesday	1.16
Northup Avenue	Urban	Local Roadway	March	Tuesday	1.16
SR 752 @ Ashville Pike	Urban	Major Collector	February	Wednesday	1.17
Long Street (SR 316)	Urban	Major Collector	February	Wednesday	1.17
Ashville Pike	Urban	Local Roadway	February	Wednesday	1.17
SR 316 @ CR 28	Urban	Major Collector	March	Thursday	1.13
Miller Avenue	Urban	Local Roadway	March	Thursday	1.13
CR 28	Urban	Local Roadway	March	Thursday	1.13

Intersection Peak Hour Factors

The intersection peak hour factor (PHF) is used to convert the hourly traffic volume into the flow rate that represents the busiest 15 minutes of the peak hour. The PHF is the sum of the traffic entering the intersection during the peak hour divided by four times the highest 15 minute volume during the peak hour. A PHF of 1 indicates that the traffic volume in each 15 minute volume is the same and therefore traffic flow is consistent throughout the hour. A lower PHF indicates a more variable traffic flow and that traffic volume has a spike during the peak 15 minute interval. PHF's under 0.80 occur in locations with highly peaked demand, such as at schools and factories during shift changes.

The ODOT Analysis and Traffic Simulation Manual ${ }^{(6)}$ provides guidance to use the existing year PHF for all intersections from traffic counts collected for the project. The PHF is calculated for the intersection as a whole and not individual approaches or movements. A minimum of 0.80 for the PHF is required to be utilized unless justified by highly peaked demands such as for schools and factories noted above. If project specific counts are not available, a default value of 0.92 is to be utilized for arterials.

It is assumed for this report that the PHF for the opening and design years are the same as the calculated PHF from the collected existing year traffic counts. The intersection PHF's are included in Appendix B. The following table shows the PHF's calculated for the study area intersections during the AM and PM peak hours:

Table 3.11 - Intersection Peak Hour Factors

ROADWAY/INTERSECTION	AM PHF	PM PHF
US 23 \& SR 752	0.888	0.976
US 23 \& SR 316/North Street	0.956	0.970
US 23 \& SR 316/Northup Avenue	0.952	0.946
SR 752 \& Ashville Pike	0.646^{*}	0.882
SR 316 \& CR 28/Miller Avenue	0.812	0.942

* A minimum PHF of 0.80 will be used.

The peak hour factors detailed in Table 3.11 will be used in the intersection capacity calculations for the Traffic Impact Study.

Additional Study Area Development - Sheetz

A Sheetz development is currently under construction at the intersection of US Route 23 and State Route 752. The Sheetz development was analyzed in a Traffic Impact Study dated March 17, 2021. The TIS was reviewed and approved by ODOT.

A copy of the traffic volume figures from the pages 9 and 10 of the Sheetz TIS that will be added to the background traffic volumes can be seen in Appendix F. The Sheetz TIS did not account for the distribution of the site generated traffic to the adjacent intersections that under study for this report.

Figure 3.13, Appendix A details the total site generated Sheetz traffic for the study area of this report and their distribution to the adjacent intersections under study. The volumes were based on Pages 9 and 10 of the March 17, 2021 Sheetz TIS. This traffic will be included in the 2024, 2030, and 2044 analysis for this report.

Additional Study Area Development - US Route 23 \& SR-316 Development

A Traffic Impact Study is currently being performed for a proposed mixed-used development at the southeast quadrant of the US Route 23 and State Route 316/Northup Avenue intersection. The development is expected to consist of retail space, commercial out lot parcels, multi-family units, duplex units, and single-family lots.

A copy of the traffic volume figures from the TIS that were added to the No-Build background traffic volumes can be seen in Appendix G. The TIS did not account for the distribution of the site generated traffic to the adjacent intersections that under study for this report.

Figure 3.14, Appendix A details the new site generated traffic for the proposed opening year of 2022 for the mixed-used development. The volumes are based on those shown in Exhibit 5 of the July 2021 TIS. This traffic will be included in the 2024 analysis for this report.

Figure 3.15, Appendix A details the new site generated traffic for the proposed design year of 2042 for the mixed-used development. The volumes are based on those shown in Exhibit 9 of the July 2021 TIS. This traffic will be included in the 2030 and 2044 analysis for this report.

3.4 Future Traffic

No-Build Conditions w/out Sheetz \& US 23/SR 316 Development

The previously discussed calculation of design hour factors and growth rates for each movement were applied to the existing 2022 traffic volumes shown in Figure 2.5, Appendix A in order to estimate the future traffic considering non-project traffic conditions without the development of the Sheetz or the proposed mixed-use development.

Spreadsheets detailing the use of the calculated growth rates and the design hour factors and the resulting expected 2024, 2030, and 2044 No-Build traffic volumes can be found in Appendix J. The NoBuild traffic volumes detailed in Appendix J do not include the site generated traffic volumes from the Sheetz or the US 23/SR316 mixed-use development

Balancing traffic volumes is a process by which the differences between traffic volume data at adjacent traffic count locations is eliminated. The traffic volumes along US Route 23 were not "balanced" for the purpose of this report due to the number of driveways, intersections, and commercial retail businesses between the three US Route 23 count locations.

This traffic is the expected traffic if the proposed additional developments and the DHL facility are not constructed, a "No-Buildw/out Additional Developments" condition. The estimated 2024, 2030, and 2044 No-Build w/out Additional Developments traffic volumes for the study area are shown graphically in Figures 3.16-3.18, Appendix A.

The No-Build w/out Additional Developments traffic volumes have been rounded to the nearest 10 to adhere to preferred ODOT practices.

No-Build Conditions w/ Sheetz \& US 23/SR 316 Development

In order to estimate the 2024 opening year No-Build traffic considering the background traffic and the additional developments in the study area, the sum of the 2024 No-Build volumes, shown in Figure 3.16, Appendix A, were added to the new generated traffic (Figures 3.13 \& 3.14). These traffic volumes are the expected volumes if the additional developments in the study area are constructed and the proposed DHL development is not constructed, or a "No-Build with Additional Development" condition.

The estimated 2024 opening year No-Build with Additional Development traffic volumes for the study area are shown graphically in Figure 3.19, Appendix A for the study area.

In order to estimate the 2030 No-Build traffic considering the background traffic and the additional developments in the study area, the sum of the 2030 No-Build volumes, shown in Figure 3.17, Appendix A, were added to the new generated traffic (Figures 3.13 \& 3.15). These traffic volumes are the expected volumes if the additional developments in the study area are constructed and the proposed DHL development is not constructed, or a "No-Build with Additional Development" condition.

The estimated 2030 No-Build with Additional Development traffic volumes for the study area are shown graphically in Figure 3.20, Appendix A for the study area.

In order to estimate the 2044 design year No-Build traffic considering the background traffic and the additional developments in the study area, the sum of the 2044 No-Build volumes, shown in Figure 3.18, Appendix A, were added to the new generated traffic (Figures 3.13 \& 3.15). These traffic volumes are the expected volumes if the additional developments in the study area are constructed and the proposed DHL development is not constructed, or a "No-Build with Additional Development" condition.

The estimated 2044 design year No-Build with Additional Development traffic volumes for the study area are shown graphically in Figure 3.21, Appendix A for the study area.

Project Build Conditions

In order to estimate the future opening year traffic considering project traffic conditions, the sum of the 2024 No-Build with Additional Development volumes, shown in Figure 3.19, Appendix A, were added to the new generated traffic (Figures 3.7 \& 3.8) to equal the future 2024 Build peak hour volumes.

The estimated 2024 Build traffic volumes for the study area are shown graphically in Figure 3.22, Appendix A for the proposed development. These traffic volumes are the expected volumes if the proposed development is constructed, or a "Build" condition. These conditions represent the expected opening year conditions with the construction of Building \#1.

In order to estimate the build year traffic considering project traffic conditions, the sum of the 2030 NoBuild with Additional Development volumes, shown in Figure 3.20, Appendix A, were added to the new generated traffic (Figures 3.9-3.12) to equal the future 2030 Build peak hour volumes.

The estimated 2030 Build traffic volumes for the study area are shown graphically in Figure 3.23, Appendix A for the proposed development. These traffic volumes are the expected volumes if the proposed development is constructed, or a "Build" condition. These conditions represent the expected build year conditions with the construction of all seven buildings

In order to estimate the future design year traffic considering project traffic conditions, the sum of the 2044 with Additional Development No-Build volumes, shown in Figure 3.21, Appendix A, were added to the new generated traffic (Figures 3.9-3.12) to equal the future 2044 Build peak hour volumes.

The estimated 2044 Build traffic volumes for the study area are shown graphically in Figure 3.24, Appendix A for the proposed development. These traffic volumes are the expected volumes if the proposed development is constructed, or a "Build" condition. These conditions represent the expected design year conditions with the construction of all seven buildings.

Appendix A

Traffic Volume Figures

Appendix B
 Collected Traffic Count Data

VEHICULAR TRAFFIC COUNT SUMMARY

2112 Case Parkway South \#7
Twinsburg, Ohio 44087
Transportation Manangement Services
File Name : TC 1 SR 752 and USR 23021722 DJS
Site Code $: 00000000$
Start Date $: 2 / 17 / 2022$
Page No $: 1$

	SOUTH WALNUT STREET (US 23)From North					From East					SOUTH WALNUT STREET (US 23) From South					$\begin{aligned} & \text { SR } 752 \\ & \text { From West } \end{aligned}$					
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
07:00 AM	0	185	28	0	213	14	0	12	0	26	47	306	0	0	353	0	0	0	0	0	592
07:15 AM	0	199	26	0	225	15	0	14	0	29	71	344	0	0	415	0	0	0	0	0	669
07:30 AM	0	178	14	0	192	25	0	19	0	44	33	324	0	0	357	0	0	0	0	0	593
07:45 AM	0	194	13	0	207	11	0	17	0	28	34	253	0	0	287	0	0	0	0	0	522
Total	0	756	81	0	837	65	0	62	0	127	185	1227	0	0	1412	0	0	0	0	0	2376
08:00 AM	0	175	17	0	192	12	0	15	0	27	20	253	0	0	273	0	0	0	0	0	492
08:15 AM	0	174	8	0	182	17	0	20	0	37	17	242	0	0	259	0	0	0	0	0	478
08:30 AM	0	188	13	0	201	14	0	18	0	32	22	271	0	0	293	0	0	0	0	0	526
08:45 AM	0	185	7	0	192	15	0	16	0	31	22	232	0	0	254	0	0	0	0	0	477
Total	0	722	45	0	767	58	0	69	0	127	81	998	0	0	1079	0	0	0	0	0	1973
09:00 AM	0	183	13	0	196	13	0	17	0	30	10	219	0	0	229	0	0	0	0	0	455
09:15 AM	0	188	7	0	195	9	0	8	0	17	16	217	0	0	233	0	0	0	0	0	445
09:30 AM	0	205	13	0	218	10	0	16	1	27	10	195	0	0	205	0	0	0	0	0	450
09:45 AM	0	191	5	0	196	7	0	7	0	14	18	179	0	0	197	0	0	0	0	0	407
Total	0	767	38	0	805	39	0	48	1	88	54	810	0	0	864	0	0	0	0	0	1757
10:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$1 \mathrm{lel}_{1} \mathrm{~L}$
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Wd ¢t：zo
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Wd 0ع：z0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Wd gl：zo
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Wd 00：Z0
¢981	0	0	0	0	0	0 о8	0	0	¢GL	GL	てかっ	0	98	0	$\angle 9$	$\varepsilon 88$	0	92	L98	0	1 PlO
†くt	0	0	0	0	0	LOZ	0	0	¢81	£乙	8ε	0	92	0	21	622	0	9	\＆ટ乙	0	Wd St：to
1くt	0	0	0	0	0	961	0	0	†く1	12	\＆	0	$\angle 1$	0	91	£って	0	8	¢¢乙	0	Wd 08：10
6Lt	0	0	0	0	0	ટ¢乙	0	0	812	＋1	$\angle 乙$	0	\＆	0	カ1	Ozz	0	G	Stz	0	Wd sl：to
เย	0	0	0	0	0	961	0	0	621	$\angle 1$	tr	0	62	0	¢ı	161	0	L	¢81	0	Wd 00： 10
9661	0	0	0	0	0	896	0	0	988	\＆8	6 St	0	801	0	99	698	0	てt	L८8	0	Petol
GLL	0	0	0	0	0	802	0	0	181	$\angle 乙$	け	0	62	0	21	9 92	0	H	GıL	0	Wd St：
8LD	0	0	0	0	0	812	0	0	861	02	8ε	0	$\varepsilon 乙$	0	St	ટ乙乙	0	8	カเて	0	Wd 08： 21
＜8ヶ	0	0	0	0	0	ャ¢乙	0	0	812	91	6ε	0	92	0	$\varepsilon \vdash$	カ12	0	カ1	002	0	Wd st： 21
9¢¢	0	0	0	0	0	80ε	0	0	882	02	เ	0	¢z	0	91	LOZ	0	6	86	0	Wd 00：z1
0091	0	0	0	0	0	$9<9$	0	0	\＆ 19	ع9	68 เ	0	¢9	0	ャL	982	0	9ε	$67 \angle$	0	letol
90t	0	0	0	0	0	¢61	0	0	0＜1	¢	け	0	91	0	¢z	0＜1	0	\dagger	991	0	
01t	0	0	0	0	0	s91	0	0	9¢1	6	92	0	61	0	\llcorner	612	0	21	$\angle 02$	0	
6เレ	0	0	0	0	0	¢81	0	0	691	St	Lع	0	St	0	¿乙	861	0	H	L81	0	W ¢ ¢1：H
¢9¢	0	0	0	0	0	乙¢	0	0	815	カt	¢	0	¢ı	0	02	86	0	6	681	0	W＊00：1t
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Petol
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	W＊¢t：01
	$18,0 \pm$ ddy	spad	मәา	nıu1	146！！	12,01 ddy	spad	Нəา	nuyl	146！	12,01 ddy	spad	Нəา	n．41	146！	［120］－ddy	spad	मəา	n． 41	146！！	2W！ 1 れ上IS
			${ }^{\text {IM M }}$	ys		$\text { (} \varepsilon \text { c sn }$	$\text { (1) } 1 \exists \exists y$	$\begin{aligned} & \text { los wo } \\ & \text { IS } 10 \mathrm{l} \end{aligned}$	H	nos			eョ mo			$\text { (} \varepsilon \text { ऽ Sn) }$	$\text { 1) } 1 \exists \exists$	$\begin{aligned} & \text { on wo } \\ & \text { is } 1 \end{aligned}$	$\nabla \mathrm{MH}$	nos	
	LZO E	US	pue	ट	0Z／L	乙：	N O	d		צonı	O－pzp	$l_{\text {l }}$ d sd									

Site Code :00000000
Start Date : $2 / 17 / 2022$
Page No : 3
Groups Printed- Cars - Trucks - Buses
SOUTH WALNUT STREET (US 23)

	SOUTH WALNUT STREET (US 23) From North					From East					SOUTH WALNUT STREET (US 23) From South					SR 752 From West					
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
03:00 PM	0	268	12	0	280	16	0	32	0	48	25	205	0	0	230	0	0	0	0	0	558
03:15 PM	0	347	12	0	359	13	0	35	0	48	13	201	0	0	214	0	0	0	0	0	621
03:30 PM	0	362	22	0	384	20	0	26	1	47	17	217	0	0	234	0	0	0	0	0	665
03:45 PM	0	385	23	0	408	13	0	27	0	40	32	169	0	0	201	0	0	0	0	0	649
Total	0	1362	69	0	1431	62	0	120	1	183	87	792	0	0	879	0	0	0	0	0	2493
04:00 PM	0	305	19	0	324	14	0	37	0	51	41	221	0	0	262	0	0	0	0	0	637
04:15 PM	0	320	27	0	347	19	0	31	0	50	28	222	0	0	250	0	0	0	0	0	647
04:30 PM	0	328	26	0	354	20	0	37	0	57	41	214	0	0	255	0	0	0	0	0	666
04:45 PM	0	361	16	0	377	14	0	22	0	36	31	190	0	0	221	0	0	0	0	0	634
Total	0	1314	88	0	1402	67	0	127	0	194	141	847	0	0	988	0	0	0	0	0	2584
05:00 PM	0	338	17	0	355	19	0	39	0	58	14	196	0	0	210	0	0	0	0	0	623
05:15 PM	0	364	12	0	376	21	0	25	0	46	28	221	0	0	249	0	0	0	0	0	671
05:30 PM	0	321	24	0	345	12	0	30	0	42	31	188	0	0	219	0	0	0	0	0	606
05:45 PM	0	314	17	0	331	12	0	27	0	39	25	172	0	0	197	0	0	0	0	0	567
Total	0	1337	70	0	1407	64	0	121	0	185	98	777	0	0	875	0	0	0	0	0	2467
Grand Total	0	8691	495	0	9186	542	0	800	2	1344	867	7704	0	0	8571	0	0	0	0	0	19101
Apprch \%	0	94.6	5.4	0		40.3	0	59.5	0.1		10.1	89.9	0	0		0	0	0	0		
Total \%	0	45.5	2.6	0	48.1	2.8	0	4.2	0	7	4.5	40.3	0	0	44.9	0	0	0	0	0	
Cars	0	7273	447	0	7720	500	0	754	2	1256	810	6319	0	0	7129	0	0	0	0	0	16105
\% Cars	0	83.7	90.3	0	84	92.3	0	94.2	100	93.5	93.4	82	0	0	83.2	0	0	0	0	0	84.3
Trucks	0	1408	41	0	1449	36	0	38	0	74	35	1377	0	0	1412	0	0	0	0	0	2935
\% Trucks	0	16.2	8.3	0	15.8	6.6	0	4.8	0	5.5	4	17.9	0	0	16.5	0	0	0	0	0	15.4
Buses	0	10	7	0	17	6	0	8	0	14	22	8	0	0	30	0	0	0	0	0	61
\% Buses	0	0.1	1.4	0	0.2	1.1	0	1	0	1	2.5	0.1	0	0	0.4	0	0	0	0	0	0.3

File Name : TC 1 SR 752 and USR 23021722 DJS Site Code $: 00000000$
Start Date $: 2 / 17 / 2022$
Page No $: 4$

Peak Hour for		cti	gins	07:0																	
07:00 AM	0	185	28	0	213	14	0	12	0	26	47	306	0	0	353	0	0	0	0	0	592
07:15 AM	0	199	26	0	225	15	0	14	0	29	71	344	0	0	415	0	0	0	0	0	669
07:30 AM	0	178	14	0	192	25	0	19	0	44	33	324	0	0	357	0	0	0	0	0	593
07:45 AM	0	194	13	0	207	11	0	17	0	28	34	253	0	0	287	0	0	0	0	0	522
Total Volume	0	756	81	0	837	65	0	62	0	127	185	1227	0	0	1412	0	0	0	0	0	2376
\% App. Total	0	90.3	9.7	0		51.2	0	48.8	0		13.1	86.9	0	0		0	0	0	0		
PHF	. 000	. 950	. 723	. 000	. 930	. 650	. 000	. 816	. 000	. 722	. 651	. 892	. 000	. 000	. 851	. 000	. 000	. 000	. 000	. 000	. 888
Cars	0	617	76	0	693	60	0	59	0	119	181	1095	0	0	1276	0	0	0	0	0	2088
\% Cars	0	81.6	93.8	0	82.8	92.3	0	95.2	0	93.7	97.8	89.2	0	0	90.4	0	0	0	0	0	87.9
Trucks	0	138	1	0	139	2	0	2	0	4	1	131	0	0	132	0	0	0	0	0	275
\% Trucks	0	18.3	1.2	0	16.6	3.1	0	3.2	0	3.1	0.5	10.7	0	0	9.3	0	0	0	0	0	11.6
Buses	0	1	4	0	5	3	0	1	0	4	3	1	0	0	4	0	0	0	0	0	13
\% Buses	0	0.1	4.9	0	0.6	4.6	0	1.6	0	3.1	1.6	0.1	0	0	0.3	0	0	0	0	0	0.5

03:45 PM	0	385	23	0	408	13	0	27	0	40	32	169	0	0	201	0	0	0	0	0	649
04:00 PM	0	305	19	0	324	14	0	37	0	51	41	221	0	0	262	0	0	0	0	0	637
04:15 PM	0	320	27	0	347	19	0	31	0	50	28	222	0	0	250	0	0	0	0	0	647
04:30 PM	0	328	26	0	354	20	0	37	0	57	41	214	0	0	255	0	0	0	0	0	666
Total Volume	0	1338	95	0	1433	66	0	132	0	198	142	826	0	0	968	0	0	0	0	0	2599
\% App. Total	0	93.4	6.6	0		33.3	0	66.7	0		14.7	85.3	0	0		0	0	0	0		
PHF	. 000	. 869	. 880	. 000	. 878	. 825	. 000	. 892	. 000	. 868	. 866	. 930	. 000	. 000	. 924	. 000	. 000	. 000	. 000	. 000	. 976
Cars	0	1201	91	0	1292	62	0	128	0	190	128	712	0	0	840	0	0	0	0	0	2322
\% Cars	0	89.8	95.8	0	90.2	93.9	0	97.0	0	96.0	90.1	86.2	0	0	86.8	0	0	0	0	0	89.3
Trucks	0	135	2	0	137	4	0	4	0	8	8	113	0	0	121	0	0	0	0	0	266
\% Trucks	0	10.1	2.1	0	9.6	6.1	0	3.0	0	4.0	5.6	13.7	0	0	12.5	0	0	0	0	0	10.2
Buses	0	2	2	0	4	0	0	0	0	0	6	1	0	0	7	0	0	0	0	0	11
\% Buses	0	0.1	2.1	0	0.3	0	0	0	0	0	4.2	0.1	0	0	0.7	0	0	0	0	0	0.4

VEHICULAR TRAFFIC COUNT SUMMARY

File Name :TC 5 USR 23 and North St 030222 DJS
Site Code $: 00000000$
Start Date $: 3 / 2 / 2022$
Page No $: 1$

 File Name : TC 5 USR 23 and North St 030222 DJS Site
Sta
Pag

Peak Hour Analysis From 03:45 PM to 04:30 PM - Peak 1 of 1																					
03:45 PM	24	387	4	0	415	4	5	2	0	11	2	192	10	0	204	24	9	22	0	55	685
04:00 PM	22	422	6	0	450	4	6	3	0	13	1	225	3	0	229	22	10	26	1	59	751
04:15 PM	24	371	2	0	397	5	6	1	0	12	4	243	8	0	255	28	8	35	0	71	735
04:30 PM	29	408	5	0	442	3	11	5	0	19	3	218	10	0	231	20	13	19	0	52	744
Total Volume	99	1588	17	0	1704	16	28	11	0	55	10	878	31	0	919	94	40	102	1	237	2915
\% App. Total	5.8	93.2	1	0		29.1	50.9	20	0		1.1	95.5	3.4	0		39.7	16.9	43	0.4		
PHF	. 853	. 941	. 708	. 000	. 947	. 800	. 636	. 550	. 000	. 724	. 625	. 903	. 775	. 000	. 901	. 839	. 769	. 729	. 250	. 835	. 970
Cars	93	1411	16	0	1520	15	27	10	0	52	10	735	26	0	771	89	38	98	1	226	2569
\% Cars	93.9	88.9	94.1	0	89.2	93.8	96.4	90.9	0	94.5	100	83.7	83.9	0	83.9	94.7	95.0	96.1	100	95.4	88.1
Trucks	6	174	1	0	181	1	0	0	0	1	0	141	5	0	146	4	0	1	0	5	333
\% Trucks	6.1	11.0	5.9	0	10.6	6.3	0	0	0	1.8	0	16.1	16.1	0	15.9	4.3	0	1.0	0	2.1	11.4
Buses	0	3	0	0	3	0	1	1	0	2	0	2	0	0	2	1	2	3	0	6	13
\% Buses	0	0.2	0	0	0.2	0	3.6	9.1	0	3.6	0	0.2	0	0	0.2	1.1	5.0	2.9	0	2.5	0.4

VEHICULAR TRAFFIC COUNT SUMMARY

MMS Enginees, Inc
2112 Case Parkway South \#7
Twinsburg, Ohio 44087
Transportation Manangement Services

[^0]

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	｜ełol
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Wd st：zo
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Wd 0¢：z0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Wd sl：z0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Wd 00：乙0
†002	$1 \angle 1$	0	Ot	89	$\varepsilon 9$	908	0	切	ちてL	$\angle \varepsilon$	161	0	69	ャG	8L	Lع8	0	$\angle 9$	でく	82	¢¢¢O」
乙て¢	\＆G	0	SI	七乙	カレ	861	0	$\varepsilon 1$	G $\angle 1$	O1．	IS	0	SI	$\varepsilon 1$	£乙	0乙乙	0	て1	カ02	†	Wd St： 10
¢St	ト	0	ト1	St	St	961	0	G	S81	9	ト	0	て1	1 1	81	LLL	0	L	291．	8	Wd 0¢： 10
เ๕¢	8ε	0	L	St	91	カレて	0	$1+$	261	1，	St	0	61	て1	カト	†¢乙	0	61	SOZ	O1	Wd Sl：10
96ヵ	6ε	0	L	カ1	81	L61	0	St	ZL1	O1．	\dagger ¢	0	$\varepsilon 1$	81	$\varepsilon 乙$	902	0	62	1L1	9	Wd 00： 10
2912	عเ乙	0	¢G	†01	†G	182	0	1ε	602	17	862	0	9 g	¢91．	LL	$0 \angle 8$	0	ャ6	$\angle Z L$	67	¢セłOL
LOG	†9	0	$\angle 1$	$8 乙$	61	161	0	8	9＜1	L	6t	0	O1	$\varepsilon 乙$	91	E0乙	0	61	$6 \angle 1$	G	Wd st：$\downarrow 1$
ZLS	99	0	\＆1	εt	O1	802	0	9	061	て1	89	0	61	81	12	0ヶて	0	0ε	861	21	Wd 0¢：で
689	St	0	ト1	$\angle 1$	$\angle 1$	902	0	O1．	ع8।	$\varepsilon 1$	LIL	0	8	S6	カト	เ乙乙	0	91	S61	O1	Wd 51 ： L
七6t	8ε	0	カー	91	8	9＜1	0	L	091	6	七L	0	61	62	92	902	0	62	SSL	乙乙	Wd 00：て1
0881	くて।	0	9ε	Ot	IS	t9 2	0	$t \square$	689	1ε	661	0	97	$\varepsilon 9$	06	064	0	$\angle 8$	699	\downarrow ¢	Petol
06t	$\angle \varepsilon$	0	カト	6	カレ	七61	0	6	9＜1	6	tG	0	カト	$\varepsilon 1$	$\angle 乙$	S02	0	12	8L1	9	W＊st： 1
てSt	$8 乙$	0	G	O1	$\varepsilon 1$	ع8।	0	91	9G1	1，	9t	0	L	81	12	S61	0	七乙	191	O1	
＜9t	0t	0	カ	H	G1	981	0	6	$0<1$	9	OG	0	21	St	£乙	261	0	02	291．	O1	
$1 \angle \Delta$	乙乙	0	ε	O1	6	20乙	0	01	L81	G	67	0	$\varepsilon 1$	$\angle 1$	61	861	0	乙乙	891	8	W＊00： $1+$
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	｜ełOL
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	W st ： 01
$1210 \pm 170 \mid$	$1 \mathrm{el}+1 . \mathrm{ddy}$	spad	Нәา	nı41	14б！！	$18+0 \pm$ dd θ	Sped	मəา	nı41	14б！	$1810 \pm$ ddy	sped	Нәา	nı41	14б！प्ర	$18+1.1$ ddy	$\mathrm{spa}_{\text {d }}$	Нәา	nı41	14б！！	2W！ 1 みelS
			M dnyト			$\text { (} \varepsilon \text { Sn }$	$\begin{array}{r} 47 \\ +\perp \exists \exists ย \\ \hline \end{array}$	$\begin{aligned} & \text { os mo } \\ & \text { LS } \perp \cap \mathrm{n} \\ & \hline \end{aligned}$	$7 \forall M \mathrm{H} .$			$\varepsilon \cup S)^{15}$	$\begin{aligned} & 9 \exists \mathrm{mo} \\ & \hline \end{aligned}$	ורות		(દ乙 Sก	$\begin{array}{r} 4 \\ \left.1 \text { 1 } 1 \exists \exists \begin{array}{r} 2 \end{array}\right) \end{array}$	$\begin{aligned} & \text { ON wo } \\ & \text { LS } \perp \text { I } \\ & \hline \end{aligned}$	7 \quad M	nos	
乙乙เ0ع0	IS ınup	PM ${ }^{\text {S }}$	8 P	乙て0	乙 L／E： O US	ON әңед әроЭ əسеN	ed elS өt！ P！！														
L80ヶt O！पO ‘＇binqsuịM 																					

Start Time									Pr	ted Cars.	Truck	Bus		File Name Site Code Start Date Page No		: Ashville : 0000000 : 3/1/2022 : 3			Walnut S		$\text { t } 030122$
	SOUTH WALNUT STREET (US 23) From North					ASHVILLE ROAD (SR 316) From East					SOUTH WALNUT STREET (US 23) From South					NORTHRUP DRIVE From West					
	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
03:00 PM	7	299	15	0	321	16	15	20	0	51	5	163	7	0	175	18	14	9	0	41	588
03:15 PM	11	308	17	0	336	23	20	11	1	55	8	137	19	0	164	27	12	13	0	52	607
03:30 PM	11	317	25	0	353	16	24	25	0	65	10	208	12	0	230	17	18	15	0	50	698
03:45 PM	20	411	23	0	454	15	21	16	0	52	8	202	12	0	222	27	30	15	0	72	800
Total	49	1335	80	0	1464	70	80	72	1	223	31	710	50	0	791	89	74	52	0	215	2693
04:00 PM	12	345	22	0	379	15	20	13	0	48	6	236	10	0	252	16	10	13	0	39	718
04:15 PM	12	338	11	0	361	19	9	18	0	46	14	237	15	0	266	34	13	25	0	72	745
04:30 PM	14	396	27	0	437	11	18	20	0	49	6	187	11	0	204	31	25	17	0	73	763
04:45 PM	17	350	22	0	389	15	26	18	2	61	10	201	10	0	221	30	14	12	0	56	727
Total	55	1429	82	0	1566	60	73	69	2	204	36	861	46	0	943	111	62	67	0	240	2953
05:00 PM	24	360	29	0	413	19	16	21	0	56	11	244	13	0	268	32	12	4	0	48	785
05:15 PM	16	321	26	0	363	17	25	10	0	52	9	215	9	0	233	21	15	21	0	57	705
05:30 PM	35	349	37	0	421	12	20	16	0	48	9	201	12	0	222	24	26	12	0	62	753
05:45 PM	10	284	37	0	331	19	14	24	0	57	14	197	9	0	220	21	11	7	0	39	647
Total	85	1314	129	0	1528	67	75	71	0	213	43	857	43	0	943	98	64	44	0	206	2890
Grand Total	369	8300	751	0	9420	719	637	535	3	1894	323	7371	355	0	8049	604	539	521	0	1664	21027
Apprch \%	3.9	88.1	8	0		38	33.6	28.2	0.2		4	91.6	4.4	0		36.3	32.4	31.3	0		
Total \%	1.8	39.5	3.6	0	44.8	3.4	3	2.5	0	9	1.5	35.1	1.7	0	38.3	2.9	2.6	2.5	0	7.9	
Cars	351	6960	730	0	8041	692	621	513	3	1829	313	6025	332	0	6670	551	519	481	0	1551	18091
\% Cars	95.1	83.9	97.2	0	85.4	96.2	97.5	95.9	100	96.6	96.9	81.7	93.5	0	82.9	91.2	96.3	92.3	0	93.2	86
Trucks	17	1328	20	0	1365	24	14	19	0	57	10	1337	20	0	1367	53	13	29	0	95	2884
\% Trucks	4.6	16	2.7	0	14.5	3.3	2.2	3.6	0	3	3.1	18.1	5.6	0	17	8.8	2.4	5.6	0	5.7	13.7
Buses	1	12	1	0	14	3	2	3	0	8	0	9	3	0	12	0	7	11	0	18	52
\% Buses	0.3	0.1	0.1	0	0.1	0.4	0.3	0.6	0	0.4	0	0.1	0.8	0	0.1	0	1.3	2.1	0	1.1	0.2

File Name ：Ashville Rd \＆S．Walnut St 030122
Site Code $: 00000000$
Start Date $: 3 / 1 / 2022$
Page No $: 4$

	SOUTH WALNUT STREET（US 23） From North					ASHVILLE ROAD（SR 316） From East					SOUTH WALNUT STREET（US 23） From South					NORTHRUP DRIVE From West					
Start Time	Right	Thru	Left	Peds	App．Total	Right	Thru	Left	Peds	App．Total	Right	Thru	Left	Peds	App．Total	Right	Thru	Left	Peds	App．Total	Int．Total
Peak Hour Analysis From 07：00 AM to 09：45 AM－Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 07：00 AM																					
07：00 AM	6	168	7	0	181	35	12	16	0	63	13	300	21	0	334	15	26	41	0	82	660
07：15 AM	1	182	19	0	202	21	6	20	0	47	9	318	14	0	341	10	14	29	0	53	643
07：30 AM	7	214	20	0	241	34	16	9	0	59	9	283	12	0	304	8	8	26	0	42	646
07：45 AM	4	176	19	0	199	27	8	16	0	51	8	262	5	0	275	11	8	20	0	39	564
Total Volume	18	740	65	0	823	117	42	61	0	220	39	1163	52	0	1254	44	56	116	0	216	2513
\％App．Total	2.2	89.9	7.9	0		53.2	19.1	27.7	0		3.1	92.7	4.1	0		20.4	25.9	53.7	0		
PHF	． 643	． 864	． 813	． 000	． 854	． 836	． 656	． 763	． 000	． 873	． 750	． 914	． 619	． 000	． 919	． 733	． 538	． 707	． 000	． 659	． 952
Cars	17	617	62	0	696	115	39	57	0	211	38	1005	47	0	1090	35	54	110	0	199	2196
\％Cars	94.4	83.4	95.4	0	84.6	98.3	92.9	93.4	0	95.9	97.4	86.4	90.4	0	86.9	79.5	96.4	94.8	0	92.1	87.4
Trucks	0	123	3	0	126	2	3	4	0	9	1	155	3	0	159	9	2	4	0	15	309
\％Trucks	0	16.6	4.6	0	15.3	1.7	7.1	6.6	0	4.1	2.6	13.3	5.8	0	12.7	20.5	3.6	3.4	0	6.9	12.3
Buses	1	0	0	0	1	0	0	0	0	0	0	3	2	0	5	0	0	2	0	2	8
\％Buses	5.6	0	0	0	0.1	0	0	0	0	0	0	0.3	3.8	0	0.4	0	0	1.7	0	0.9	0.3

Peak Hour Analysis From 03：45 PM to 04：30 PM－Peak 1 of 1 Peak Hour for Entire Intersection Begins at 03：45 PM

ำกヘ		$\stackrel{N}{\infty}$	
0000	$\bigcirc 0$	O	000000
$\stackrel{\sim}{\sim}$ ¢ ค ¢	$P \stackrel{m}{N}$	\bigcirc	$\hat{0} \underset{\underset{O}{\circ}}{\wedge} \sim \underset{\sim}{\sigma}-\underset{+}{+}$
ㅇలㅇㅇㅡ 쑤 신	$\left\lvert\,\right.$	¢	
へ ${ }_{\text {N }}{ }^{\text {c }}$	∞	¢	$\text { N } \underset{\sim}{\circ} \dot{\sigma}$
Nָ N N : ષ ત		$\underset{\infty}{\infty}$	
0000	00	O	000000
	$\underset{\sim}{\infty}$	－	ஷo
$\underset{\sim}{\sim}{ }_{N}^{(N)} \stackrel{N}{N}$	$\underset{\infty}{\check{\infty}}$	\％	
$\infty \quad \pm 0$	¢ ${ }_{\text {¢ }}^{\sim}$	No	
ベか ¢ ¢ ¢	응	$\stackrel{\infty}{\mathrm{o}}$	
0000	00	O	000000
$\oplus \stackrel{\infty}{\square} \stackrel{\infty}{\tau}$	$\stackrel{\rightharpoonup}{\mathrm{C}} \underset{\mathrm{j}}{\mathrm{j}}$	¢	$\hat{0} 00000$
$\bar{\sim} \stackrel{\infty}{\sim}$	$\left\lvert\, \begin{array}{cc} \infty \\ 0 \\ \hline \dot{C} \end{array}\right.$	응	$\hat{\sim} \underset{\sim}{\infty}-\stackrel{\sim}{\infty}$
ำำำ	$\begin{array}{ll} 0 \\ 0 \\ \hline \end{array}$	¢	
		$\stackrel{\infty}{\infty}$	$\underset{\sim}{\infty} \underset{\sim}{\circ} \dot{\circ} \dot{\square}$
0000	00	O	000000
$\mathfrak{N} \mathbb{N} \mp$	∞	\％	$\underset{\infty}{\infty} \underset{\infty}{\infty}-\underset{\sim}{\sim} \circ$
		¢	
ヘ	∞	$\stackrel{\sim}{N}$	$\text { in } \underset{\infty}{\infty}-\underset{\sim}{-} 0$
		$\frac{1}{1}$	

VEHICULAR TRAFFIC COUNT SUMMARY

TMS Engines, Inc.
2112 Case Parkway South \#7
Twinsburg, Ohio 44087
Transportation Manangement Services File Name
Site Code
Start Date
Page No
: TC 2 SR 752 and Long St Ashville 021622 DJS
$: 00000000$
$: 2 / 16 / 2022$
$: 1$

CS Eng
2112 Case Parkway South \#7
Twinsburg, Ohio 44087
Transportation Manangement Services

File Name : TC 2 SR 752 and Long St Ashville 021622 DJS Site Code : 00000000 Start Date : 2/16/2022 Page

File Name : TC 2 SR 752 and Long St Ashville 021622 DJS $: 00000000$
$: 2 / 16 / 2022$
$: 4$

		$\stackrel{\rightharpoonup}{6}$	
セ¢ํํ N	N	$\stackrel{\sim}{0}$	

 Peak Hour for Entire Intersection Begins at 03:45

 $\underset{\sim}{\infty} \mp \operatorname{\infty }$

VEHICULAR TRAFFIC COUNT SUMMARY

TMS Engines, Inc.
2112 Case Parkway South \#7
Twinsburg, Ohio 44087
Transportation Manangement Services

File Name : W. Main St \& Miller Ave + Cromley Rd 030322 JJO Site Code : 00000000 Start Date: 3/3/2022 Page No : 2

File Name : W. Main St \& Miller Ave + Cromley Rd 030322 JJO Site Code : 00000000 Start Date : 3/3/2022 Page No : 3

	MILLER AVENUE From North					WEST MAIN STREET (SR 316) From East					CROMLEY ROAD From South					WEST MAIN STREET (SR 316)From West					
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
03:00 PM	5	3	6	0	14	7	36	8	0	51	9	2	2	0	13	5	24	5	0	34	112
03:15 PM	6	1	6	0	13	4	31	9	0	44	15	3	2	0	20	8	27	6	0	41	118
03:30 PM	7	0	4	0	11	6	47	5	0	58	9	0	1	0	10	7	41	3	0	51	130
03:45 PM	6	2	14	0	22	8	39	7	0	54	5	1	3	0	9	9	45	3	0	57	142
Total	24	6	30	0	60	25	153	29	0	207	38	6	8	0	52	29	137	17	0	183	502
04:00 PM	8	1	7	0	16	6	38	9	0	53	8	4	2	0	14	6	42	3	0	51	134
04:15 PM	6	1	4	0	11	3	45	12	0	60	7	3	5	0	15	5	30	4	0	39	125
04:30 PM	2	3	4	0	9	5	49	11	0	65	12	2	1	0	15	8	32	5	0	45	134
04:45 PM	5	0	6	0	11	4	55	14	0	73	7	1	2	0	10	4	41	5	0	50	144
Total	21	5	21	0	47	18	187	46	0	251	34	10	10	0	54	23	145	17	0	185	537
05:00 PM	4	1	3	0	8	6	37	7	0	50	3	1	6	0	10	13	43	3	0	59	127
05:15 PM	1	2	3	0	6	8	43	7	0	58	9	1	4	0	14	3	42	5	0	50	128
05:30 PM	2	1	3	0	6	7	25	4	0	36	10	2	2	0	14	11	46	2	0	59	115
05:45 PM	2	1	4	0	7	4	47	10	0	61	3	1	2	0	6	6	45	6	0	57	131
Total	9	5	13	0	27	25	152	28	0	205	25	5	14	0	44	33	176	16	0	225	501
Grand Total	145	35	145	2	327	147	1150	208	1	1506	236	41	140	1	418	137	1020	122	1	1280	3531
Apprch \%	44.3	10.7	44.3	0.6		9.8	76.4	13.8	0.1		56.5	9.8	33.5	0.2		10.7	79.7	9.5	0.1		
Total \%	4.1	1	4.1	0.1	9.3	4.2	32.6	5.9	0	42.7	6.7	1.2	4	0	11.8	3.9	28.9	3.5	0	36.3	
Cars	13	35	139	1	314	143	1097	204	0	1444	230	39	135	1	405	130	963	116	1	1210	3373
\% Cars	95.9	100	95.9	50	96	97.3	95.4	98.1	0	95.9	97.5	95.1	96.4	100	96.9	94.9	94.4	95.1	100	94.5	95.5
Trucks	2	0	3	0	5	2	46	4	0	52	3	0	4	0	7	6	51	3	0	60	124
\% Trucks	1.4	0	2.1	0	1.5	1.4	4	1.9	0	3.5	1.3	0	2.9	0	1.7	4.4	5	2.5	0	4.7	3.5
Buses	4	0	3	1	8	2	7	0	1	10	3	2	1	0	6	1	6	3	0	10	34
\% Buses	2.8	0	2.1	50	2.4	1.4	0.6	0	100	0.7	1.3	4.9	0.7	0	1.4	0.7	0.6	2.5	0	0.8	1

File Name ：W．Main St \＆Miller Ave＋Cromley Rd 030322 JJO Site Code $: 00000000$
Start Date $: 3 / 3 / 2022$ Start Date $: 3 / 3 / 2022$
Page No ： 4 Page No

	MILLER AVENUE From North					WEST MAIN STREET（SR 316） From East					CROMLEY ROAD From South					WEST MAIN STREET（SR 316） From West					
Start Time	Right	Thru	Left	Peds	App．Total	Right	Thru	Left	Peds	App．Total	Right	Thru	Left	Peds	App．Total	Right	Thru	Left	Peds	App．Total	Int．Total
Peak Hour Analysis From 07：00 AM to 09：45 AM－Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 07：00 AM																					
07：00 AM	1	1	7	0	9	2	36	4	0	42	9	0	16	0	25	2	33	2	0	37	113
07：15 AM	2	2	2	0	6	1	28	2	0	31	12	0	12	0	24	1	25	1	0	27	88
07：30 AM	0	1	2	0	3	2	36	1	0	39	9	1	10	0	20	2	24	2	0	28	90
07：45 AM	2	0	1	0	3	3	30	0	0	33	6	0	5	0	11	5	22	2	0	29	76
Total Volume	5	4	12	0	21	8	130	7	0	145	36	1	43	0	80	10	104	7	0	121	367
\％App．Total	23.8	19	57.1	0		5.5	89.7	4.8	0		45	1.2	53.8	0		8.3	86	5.8	0		
PHF	． 625	． 500	． 429	． 000	． 583	． 667	． 903	． 438	． 000	． 863	． 750	． 250	． 672	． 000	． 800	． 500	． 788	． 875	． 000	． 818	． 812
Cars	5	4	11	0	20	8	123	7	0	138	35	1	42	0	78	10	97	6	0	113	349
\％Cars	100	100	91.7	0	95.2	100	94.6	100	0	95.2	97.2	100	97.7	0	97.5	100	93.3	85.7	0	93.4	95.1
Trucks	0	0	0	0	0	0	6	0	0	6	0	0	1	0	1	0	6	0	0	6	13
\％Trucks	0	0	0	0	0	0	4.6	0	0	4.1	0	0	2.3	0	1.3	0	5.8	0	0	5.0	3.5
Buses	0	0	1	0	1	0	1	0	0	1	1	0	0	0	1	0	1	1	0	2	5
\％Buses	0	0	8.3	0	4.8	0	0.8	0	0	0.7	2.8	0	0	0	1.3	0	1.0	14.3	0	1.7	1.4

フ $\underset{\sim}{\text { ¢ }}$ N	$\left.\right\|_{\hat{N}} ^{\infty}$	$\underset{\sim}{\mathrm{O}}$	$\frac{N}{i n} \stackrel{\leftrightarrow}{\circ}$
べ	§ั	$\underset{\infty}{\mathfrak{N}}$	$\bigcirc \stackrel{\infty}{\infty} \text { 둥 }$
0000	00	O	000000
の $\quad \downarrow$ ¢	$\stackrel{\infty}{\sim}$	员	$\stackrel{0}{1} 80000$
¢ ษ \％ハ	$\stackrel{\text { g }}{\boldsymbol{\gamma}} \stackrel{0}{N}$	$\stackrel{\infty}{\infty}$	
$の \bullet$ の	$\stackrel{\infty}{\sim} \underset{+}{\underset{\sim}{+}}$	$\stackrel{\infty}{\sim}$	
のサ セก セ	ก	$\underset{\infty}{\infty}$	

Peak Hour for Entire Intersection Begins at 03：45 PM
Peak Hour Analysis From 03：45 PM to 04：30 PM－Peak 1 of 1
$\begin{array}{rr}14 & 0 \\ 7 & 0\end{array}$
0
0

$$
\begin{array}{r|rrrr}
\hline \text { Total Volume } & 22 & 7 & 29 & 0 \\
\text { \% App. Total } & 37.9 & 12.1 & 50 & 0 \\
\hline \text { PHF } & .688 & .583 & .518 & .000 \\
\hline
\end{array}
$$

$+$
00000 $\underset{\sim}{\sim} \underset{\sim}{\circ}-\underset{\sim}{\circ}-\underset{\sim}{\circ}$

Appendix C

Development Trip Generation Data

Westerville, OH, 17 February 2022
DHL Real Estate Development- Excellence. Simply delivered.
FORINTERNALUSE
DHL NorAm Location Information - PowerBI

Information updated daily LOGICS
Summary below is sorted by sector with the highest amount of square footage
Sectors with the highest concentration of headcount per sq/ft are darker red
Retail leads with 51 heads per 100 kq /ft of space
Chem / engineering \& manufacturing are last with 13-14 heads per 100k sq/ft of space
Sector
Heads per x sq/ft (Daily)

ITE provided results on various building sizes on FTE and truck movement over two shifts

Errors were discovered replicating the math (in red)

The summary for 'Enter' and 'Exit' between 7-9 AM left out the final row for 570k sq/ft

The final total between 4-6 PM (bottom right) was not totaling the entire headcount

The results below are based on actual DHL operations for FTE and truck movement over two shifts

The left table 'DHL Operations (All Sectors) are a weighted average of all ops. The right is our max FTE/Truck sector

All sectors are significantly less for FTE than the ITE output

Retail is $\sim 40 \%$ of the ITE results while trucks is the same

DHL is speculating that the ITE numbers are theoretical max headcount for given $\mathrm{sq} / \mathrm{ft}$

[^1]FORINTNERNALUSUSE
DHL NorAm Location Information - Consumer and Ecommerce
Data is representative of actual DHL operations for the noted sector verticles

		$\frac{\stackrel{n}{n}}{\stackrel{y}{c}}$	m	¢	앙	$\stackrel{-}{-}$
		$\frac{\stackrel{y}{y}}{\stackrel{y}{2}}$	오	¢	¢	N
		$\stackrel{N}{N}$	$\begin{aligned} & \text { 응 } \\ & \hline 0 \end{aligned}$	밍	$\stackrel{\text { N}}{\hat{N}}$	앙

dHL SITE GENERATED TRAFFIC CALCULATIONS

[^2]TOTAL SITE GENERATED TRIPS - PER AVAILABLE DHL DATA

Appendix D
 ODOT COVID-19 Calibration Guidelines

Decreased traffic as a result of the COVID19 pandemic requires additional consideration in the collection and processing of traffic counts for design traffic forecasts. The Office of Technical Services is continuously reporting the statewide decrease in traffic as registered by our permanent traffic recorders at:
https://www.transportation.ohio.gov/wps/portal/gov/odot/programs/technical-services/resources/regional-traffic-analysis

Currently about a 15% decrease in traffic is occurring. While this is similar to the decrease experienced from May to August, September and early October decreases were closer to 10%. It's too early to tell whether this represents a new trend due to increasing COVID19 trends or additional suppression related to pre-holiday travel, however regardless, the values reported here are averages based solely on the location of the permanent traffic recorders which are heavily biased towards freeways and therefore may not represent local conditions.

For establishing base line traffic conditions for forecasting projects, the following procedure is therefore provided. Note, this method is an expedient to keep projects moving, if possible the project sponsor might want to defer collecting new traffic counts for projects until traffic conditions return to normal (at a minimum normal is defined as within 15% of pre-pandemic values, even better would be to wait until post-pandemic volumes can be measured). Additionally, any projects whose forecasts are based upon counts collected during the pandemic will require new traffic counts if they are subsequently resubmitted for certification once ODOT determines traffic levels have returned to normal, note this does not necessarily mean the forecasts must be redone as long as the new counts are in reasonable agreement (usually within 15\%) with the counts used for the forecasts. Since some locations may currently be close to normal, the factoring procedure is optional. However, any forecast submitted for certification must follow Steps 1 and 2 and:
A. Contain count plates showing the prior existing counts and original raw project counts and if the factoring procedure is used the factored values with factor stations and the new counts to which they applied clearly indicated.
B. Forecast plates must contain the following additional uncertainty note (the italicized part only included if factoring is conducted): "Counts collected during COVID19 Pandemic and factored per ODOT Modeling and Forecasting guidance".

Step 1 Get Existing Counts
Utilize the ODOT Traffic Monitoring Management System at:

https://odot.ms2soft.com/tcds/tsearch.asp?loc=odot

to obtain as many prior existing counts as possible. ODOT coverage counts are conducted every 3 years, the latest count that is no more than 3 years old should be used, however, only counts conducted prior to March 15, 2020 should be included. Efforts should be made to include counts on the primary project routes even if those counts are outside of the project study area.

Step 2 Conduct New Counts

Conduct new counts as normal, both machine and turning movement. New machine counts must also be conducted at the locations obtained in step 1 to establish "factor stations". Counts should be conducted following all previously published guidance:

https://www.transportation.ohio.gov/static/Programs/StatewidePlanning/ModelingForecasting/GuidelinesTCTFRoadwayDesign.pdf

Step 3 Create Project Specific Factors

In lieu of the normal seasonal adjustment factor process to develop AADT, the counts collected at the factor stations will be compared to the counts from step 1 to develop factors. Both daily (AADT) and peak hour factors will be calculated separately as it is anticipated that time of day patterns have been changed drastically (and thus the peak hour selected for analysis should be determined by the existing counts from step 1). Note, at the daily level the raw new count is compared to the seasonally adjusted prior count, thus the factor developed is a replacement for the seasonal adjustment factoring process. If other project counts are conducted on different days from the factor stations, additional seasonal factors could be applied to reconcile to the factor day, however, so long as all project counts are conducted on Monday-Thursday within a month of one another this should be unnecessary. This does not replace or change other processes such as the application of design hour volume factors.

Step 4 Apply Factors

The factors from Step 3 will be applied to the other counts collected in Step 2. The analyst needs to determine which factors to apply to each count. Generally, factors should be selected from the same road as close to the subject count as possible. If this isn't possible, a factor station with similar characteristics (functional class, development density, lanes, speed limit, access type etc.) and geographic proximity should be chosen. Average factors from multiple locations might also be used.

Step 5 Additional Turn Movement Count Considerations

As ODOT's Traffic Monitoring Management System does not contain extensive turning movement counts and turning movement counts aren't conducted for an entire day there are additional considerations. If a count does exist in TMC (the turning movement portion of TMMS) and it is within 3 years old it can be used in lieu of a new count. A new count could also be conducted for the purpose of creating factors from this count in Step 2, however, since TM counts are not done for the full day, this would only result in peak hour factors which would thus require alternate factor station locations for developing the AADT factors. Therefore, in general, factor station locations are recommended for machine count locations only.

In addition, it is possible that the turning movement proportions have been skewed as a result of the traffic decrease. Therefore, for important intersections, it is recommended that StreetLight Data be queried at the intersection using average week day for one full month of weekdays. Both a pre and post COVID19 month should be queried. The pre-C month should either be February 2020 or the month in 2019 matching the post-C month selected below. The former should be used if the analyst believes changing development patterns are most important while the latter is used if the analyst believes seasonal effects are most important. The post-C month will be the latest month available in StreetLight. The comparisons should be made in terms of the turning movement percentages, not absolute volume. If the StreetLight comparisons indicate the turn movement percentages have changed by more than 10 percentage points, the turn movement count percentages can be adjusted to reflect this. Any such adjustment must be clearly indicated with the submitted count information.

Note: Check back to the web site for any updates.

Simple Corridor Project Factor Example (Blue Dots are TMMS- MS2 Count Locations)

Step 1: Get the most recent hourly, 24-hour count.
Use TMMS (https://odot.ms2soft.com/tcds/tsearch.asp?loc=Odot\&mod=) to obtain "Old" pre-COVID date count.

Step 2: Get the new count

> Note: The new count is taken at the same location as Location ID: 472 as a
> 24-hour count. (probably tube count)
> NEW Raw Count 4/1512020 (COVID Best)

Step 3: Calculate factors: (Pre-COVID count) / (new count)

Repeat this calculation for as many MS2 counts are in the project area within the same year and average them. In this example, the two on US 6 shown may be enough.

Appendix E

ODOT Historical Traffic Data

Volume Count Report

LOCATION INFO	
Location ID	2765
Type	SPOT
Fnct'I Class	3
Located On	US-23
Loc On Alias	N310
BETWEEN	SR-752 AND DUVALL RD (SR-762)
Direction	2-WAY
County	Pickaway
Community	HARRISON
MPO ID	
HPMS ID	
Agency	ODOT

COUNT DATA INFO

Count Status	Accepted
Start Date	Thu 2/17/2022
End Date	Fri 2/18/2022
Start Time	$12: 00: 00 \mathrm{AM}$
End Time	$12: 00: 00 \mathrm{AM}$
Direction	
Notes	
Station	
Study	
Speed Limit	
Description	
Sensor Type	ATR
Source	TCDS_COUNT_IMPORT_COMBINE
Latitude,Longitude	

Count Navigation: $\| \lll<\ggg 1$

INTERVAL:15-MIN					
Time	15-min Interval				Hourly Count
	1st	2nd	3rd	4th	
(1) 0:00-1:00	82	68	60	68	278
1:00-2:00	60	54	62	48	224
2:00-3:00	47	50	59	48	204
3:00-4:00	59	68	61	90	278
4:00-5:00	96	134	168	174	572
5:00-6:00	230	322	329	345	1,226
6:00-7:00	484	581	541	466	2,072
7:00-8:00	494	540	528	449	2,011
8:00-9:00	435	414	438	418	1,705
9:00-10:00	388	408	407	350	1,553
10:00-11:00	374	361	397	340	1,472
11:00-12:00	318	340	375	332	1,365
12:00-13:00	482	421	417	395	1,715
13:00-14:00	363	413	396	406	1,578
14:00-15:00	414	487	490	485	1,876
15:00-16:00	484	551	559	573	2,167
16:00-17:00	523	570	580	545	2,218
17:00-18:00	538	619	502	495	2,154
18:00-19:00	472	383	382	334	1,571
19:00-20:00	242	265	254	224	985
20:00-21:00	241	211	186	180	818
21:00-22:00	201	191	184	158	734
22:00-23:00	145	115	129	103	492
23:00-24:00 (1)	88	95	100	82	365
Total					29,633
AM Peak					$\begin{array}{r} 15-07: 15 \\ 2,082 \end{array}$
PM Peak					$\begin{array}{r} 30-17: 30 \\ 2,282 \end{array}$

Volume Count Report

LOCATION INFO	
Location ID	2765
Type	SPOT
Fnct'I Class	3
Located On	US-23
Loc On Alias	N310
BETWEEN	SR-752 AND DUVALL RD (SR-762)
Direction	2-WAY
County	Pickaway
Community	HARRISON
MPO ID	
HPMS ID	
Agency	ODOT

COUNT DATA INFO

Count Status	Accepted
Start Date	Thu 2/20/2020
End Date	Fri 2/21/2020
Start Time	$12: 00: 00 \mathrm{AM}$
End Time	$12: 00: 00 \mathrm{AM}$
Direction	
Notes	
Station	
Study	
Speed Limit	
Description	
Sensor Type	ATR
Source	TCDS_COUNT_IMPORT_COMBINE
Latitude,Longitude	

INTERVAL:15-MIN					
Time	15-min Interval				
	1st	2nd	3rd	4th	
Count					

Count Navigation: $|\lll<\ggg|$

Count Type: VOLUME \vee
NB

Appendix F

Sheetz TIS Trip Generation Figures

AM
 PEAK

$A+B+C=D$

A - Background Volumes (2031)
B - Primary Trips
C - Pass-by Trips
D - Total Volumes
ms consultants, inc. engineers, architects, planners

South Bloomfield Sheetz
Traffic Impact Study
South Bloomfield, Ohio
Figure 3: AM Peak Hour Turning Movement Volumes

$A+B+C=D$

A - Background Volumes (2031)
B - Primary Trips
C - Pass-by Trips
D - Total Volumes

$$
\begin{gathered}
\text { PM } \\
\text { PEAK }
\end{gathered}
$$

Figure 4: PM Peak Hour Turning Movement Volumes

Appendix G

US23/SR316 Development TIS Trip Generation Figures

Appendix H
 MORPC Growth Rate Correspondence

From:	Hwashik Jang hjang@morpc.org
Sent:	Tuesday, March 29, 2022 2:43 PM
To:	Andy Comer
Cc:	Nick Gill
Subject:	RE: Proposed DHL Facility TIS - Ashville, Pickaway County, Ohio

Andy,
We have completed processing growth rates for your Ashville traffic study area.
Please use linear annual growth rates as summarized below.

Location	Linear Annual Growth Rate
SR 752 e/o US 23	2.00\%
US 23 n/o SR 752	0.90\%
US 23 s/o SR 752	0.90\%
US 23 n/o SR 316	0.90\%
SR 316 w/o US 23	1.60\%
US 23 s/o SR 316	0.90\%
SR 316 e/o US 23	2.00\%
US 23 n/o SR 316	1.00\%
SR 316 w/o US 23	2.00\%
US 23 s/o SR 316	0.90\%
SR $752 \mathrm{e} / \mathrm{L}$ Long St	2.00\%
Long St n/o SR 752	2.20\%
SR 752 w/o Long St	2.00\%
Long St s/o SR 752	2.20\%
W Main St e/o Cromley Rd	2.00\%
SR 316 w/o Cromley Rd	2.00\%

Note: The above rate was derived based on planning level analysis by using MORPC's regional travel demand model.
If you have any questions, please let me know.
Thanks,

HWASHIK JANG

Senior Planner, Mid-Ohio Regional Planning Commission
T: 614.233.4145 | hjang@morpc.org
111 Liberty Street, Suite 100 | Columbus, OH 43215

Given continued concerns and rapidly changing conditions due to COVID-19, MORPC offices are currently open to the public, but on a limited basis for preplanned meetings. In taking such steps, we are protecting the health and safety of our staff, members, and the general public. During this time, MORPC will continue to provide services to our members and community partners remotely. For updates and other information visit our website at www.morpc.org/covid19. Thank you for your patience and understanding as we navigate through these unique challenges.

From: Andy Comer Andy@tmsengineers.com
Sent: Friday, March 4, 2022 1:16 PM
To: Hwashik Jang hjang@morpc.org
Subject: Proposed DHL Facility TIS - Ashville, Pickaway County, Ohio
Hwashik,
We have been contracted to prepare a Traffic Impact Study for a proposed DHL facility in Ashville, Pickaway County, Ohio. The project is expected to consist of 7 warehouse/spec buildings. The development is proposed with access along SR 752 and SR 316 east of US 23. The SR 752 access is proposed for both car and truck traffic. The SR 316 access will be a car access only. Attached please find a "Project Location Map" detailing the development location. We are providing the following information in order to request a traffic growth rate for the study area roadways (US 23/SR 752/SR 316):

1. Traffic Data - We collected traffic data at five locations as determined with ODOT, Asheville, and South Bloomfield. See attached "Traffic Count Data". Included with the traffic data please find a map detailing the count locations and summary of the peak hour data.
2. Open Year \& Design Year - Opening Year 2023 \& Design Year 2043
3. Roadway Network Assumptions - The TIS will determine traffic and lane use at the proposed access locations and if any additional improvements are needed at the existing intersections.
4. Land Use Assumptions - The attached "Project Site Plan" includes a breakdown of each development building and the site plans for the development. The trip generation for the development will be based on site specific data. 5. Project Review Contact Person - The project will be reviewed by ODOT, District 6. We had a project scoping meeting with ODOT, District 6 on February 9, 2022. Our contact at ODOT District 6 is currently Andrew Hurst. We have also been in contact with the Village of Ashville engineer - Christopher Tebbe.

Please let me know if you have any questions or if there is any additional information you require to determine a traffic growth rate for the project study area.

Thank you,
Andy

Andrew B. Comer, P.E.

TMS Engineers, Inc.

2112 Case Parkway South \#7
Twinsburg, Ohio 44087
T: (330) 686-6402
F: (330) 686-6417

Appendix I

ODOT Peak Hour to Design Hour Chart

PEAK HOUR to DESIGN HOUR FACTORS

FUNCTIONAL CLASSIFICATION = 03, 04, 05u
(Urban Principal Arterial, Urban Minor Arterial, \& Urban Minor Collector)

Month		Monthly Average by Day-of-Week							
		MON-THUR	Sun	Mon	Tue	Wed	Thu	Fri	Sat
		0	1	2	3	4	5	6	7
January	1	1.20	1.72	1.22	1.21	1.20	1.17	1.15	1.56
February	2	1.17	1.63	1.19	1.16	1.17	1.16	1.11	1.48
March	3	1.15	1.57	1.16	1.16	1.16	1.13	1.11	1.45
April	4	1.11	1.52	1.13	1.12	1.09	1.09	1.06	1.41
May	5	1.08	1.44	1.10	1.09	1.08	1.06	1.04	1.35
June	6	1.14	1.51	1.16	1.15	1.14	1.11	1.09	1.39
July	7	1.16	1.54	1.19	1.17	1.15	1.15	1.13	1.44
August	8	1.13	1.51	1.15	1.14	1.13	1.11	1.08	1.40
September	9	1.12	1.53	1.15	1.11	1.12	1.09	1.04	1.40
October	10	1.10	1.53	1.13	1.10	1.10	1.08	1.05	1.40
November	11	1.13	1.56	1.16	1.12	1.13	1.11	1.06	1.48
December	12	1.13	1.58	1.14	1.13	1.12	1.12	1.09	1.44

peak hour volume * factor = design hour volume
source: year 2016, 2017, \& 2018 Automatic Traffic Recorders (ATR) Data
ATR Stations:
2018: 21, 28, 123, 131, 134, 166, 169, 517, 523, 543, 544, 550,
565, 605, 765
2017: 21, 123, 523, 538, 543, 544, 550, 565, 605, 725, 765, 28,
134, 169, 517, 131, 166
NOTE: These are NOT seasonal adjustment factors!!!
Note: Insufficient data exists to produce factors for functional classes 06 and 07 Urban.

Appendix J

Background Traffic Volume Forecast Calculations

$\left\lvert\, \begin{gathered} \text { 든 } \\ \vec{z} \end{gathered}\right.$	$\left\|\begin{array}{c} 0 \\ \stackrel{0}{\mathrm{~N}} \end{array}\right\|$		$\left\lvert\, \begin{gathered} 0 \\ \underset{\sim}{2} \\ \underset{2}{ } \end{gathered}\right.$		$\left\|\begin{array}{c} \infty \\ \underset{\sim}{N} \end{array}\right\|$		－	－	－	－	N	－	$\left\lvert\, \begin{aligned} & \stackrel{8}{N} \\ & \stackrel{N}{2} \end{aligned}\right.$		$\mid \stackrel{8}{\mathbf{O}}$		$\left\lvert\, \begin{array}{\|l\|} \hline \hline \mathrm{O} \\ \mid \end{array}\right.$			華		－		－
$\begin{array}{\|cc} \vec{y} & 5 \\ \hline \end{array}$	$\stackrel{N}{\mathrm{~N}}$		$\stackrel{N}{N}$		$\stackrel{\text { ¢ }}{\sim}$		$\stackrel{\sim}{\sim}$	－	$\stackrel{\text { ㅇ}}{\sim}$	$\stackrel{?}{ㅇ}$	$\stackrel{-}{N}$	읏	$\stackrel{\circ}{\circ}$		$\stackrel{\circ}{\circ}$		주			汧	$\stackrel{\circ}{\circ}$	$\stackrel{\sim}{\sim}$	O	－
$\stackrel{y}{\square}$																								
$\stackrel{\square}{\underline{\Sigma}}$																								
590960	\bigcirc		\bigcirc		\bigcirc		\bigcirc	\bigcirc	－	－	\bigcirc	－	\bigcirc		\bigcirc		\bigcirc				0	－	\bigcirc	－
	\bigcirc	$\left\lvert\, \begin{array}{\|c\|} \hline 8 \\ \hline 0 \\ \hline \end{array}\right.$	\bigcirc	$\stackrel{\circ}{\circ}$	\bigcirc	$\begin{array}{\|c\|} \hline 8 \\ \hline 0 \\ \hline \end{array}$	\bigcirc	－	－	－	\bigcirc	－	－	\bigcirc	\bigcirc	$\stackrel{\circ}{\circ}$	\bigcirc	－	\bigcirc	－	\bigcirc	－	－	－
$\underset{\sim}{~ ᄅ ~}$	0	$\begin{array}{\|c\|} \hline 0 \\ \hline 0 \end{array}$	\bigcirc	$\stackrel{8}{9}$	\bigcirc	$\begin{array}{\|l\|} \hline 0 \\ \hline 0 \\ \hline \end{array}$	－	－	－	－	0	－	－	0	－	$\stackrel{8}{8}$	\bigcirc	\％	\bigcirc	－	0	－	0	－
\pm	0	$\begin{array}{\|c\|} \hline 0 \\ \hline 0 \\ \hline \end{array}$	\bigcirc	$\stackrel{\circ}{9}$	\bigcirc	$\begin{array}{\|l\|} \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline \end{array}$	\bigcirc	－	\bigcirc	－	\bigcirc	－	－	$\begin{array}{\|c\|} \hline 8 \\ \hline 0 \end{array}$	\bigcirc	$\stackrel{8}{8}$	－	－	\bigcirc	－	0	－	\bigcirc	－
$\stackrel{y}{\square}$																								
$\stackrel{\square}{\underline{L}}$																								
N	N		$\stackrel{N}{N}$		\hat{F}		ก	은	$\stackrel{\text { 악 }}{ }$	$\stackrel{\circ}{7}$	$\bar{\sim}$	$\stackrel{\circ}{\sim}$	$\stackrel{\otimes}{\square}$		$\stackrel{\infty}{\sim}$		®		～	인	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\sim}$	\％	－
	$\stackrel{\text { ® }}{\circ}$	$\stackrel{8}{\circ}$	$ٌ$	$\stackrel{\circ}{\stackrel{\circ}{\square}}$	$\stackrel{1}{\sim}$	$\begin{array}{\|l\|} \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline \end{array}$	$\stackrel{\sim}{\sim}$	¢	¢	8	$\stackrel{\circ}{\circ}$	욱	\％	$\stackrel{8}{\square}$	®	$\stackrel{\circ}{\sim}$	$\stackrel{\circ}{\circ}$	－	®	¢	®	8	욷	욱
$\underset{5}{2}$	－	$\|\stackrel{\circ}{\mathrm{O}} \underset{-}{-}\|$	\bigcirc	$\stackrel{\circ}{\stackrel{\circ}{n}} \underset{\square}{\square}$	\bigcirc	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ \hline \end{array}\right\|$	－	－	－	－	\bigcirc	－	\bigcirc	$\stackrel{\text { O}}{\square}$	\bigcirc	$\stackrel{\circ}{\circ}$	－	－	\bigcirc	0	0	－	\bigcirc	－
\pm	®	$\|\stackrel{\circ}{\mathrm{O}} \underset{-}{-}\|$	©	$\stackrel{\stackrel{\circ}{n}}{\stackrel{\stackrel{n}{2}}{\square}}$	N	$0 \begin{aligned} & 0 \\ & \hline 0 \\ & 0 \end{aligned}$	$\stackrel{\sim}{N}$	\bigcirc	®	®	$\stackrel{\circ}{\circ}$	운	N	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\stackrel{\text { ² }}{\sim}$	$\stackrel{\circ}{\circ}$	$\stackrel{\sim}{2}$	－	욛	\％	N	$\stackrel{\square}{\sim}$	주	O－N
	$\left\|\begin{array}{c} \underset{\sim}{\sim} \\ \underset{\sim}{2} \end{array}\right\|$		$\left\|\begin{array}{c} \underset{\sim}{\sim} \\ \mid \end{array}\right\|$		$\left\|\begin{array}{\|c} \bar{O} \\ \mid \end{array}\right\|$		$\left\|\begin{array}{l} \infty \\ \stackrel{\sim}{*} \\ \sim \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \mathrm{O} \\ & \hline \end{aligned}\right.$	$\left\lvert\, \begin{gathered} \infty \\ \stackrel{\infty}{N} \end{gathered}\right.$	$\stackrel{\circ}{\mathrm{N}}$	$\left\|\frac{0}{\bar{m}}\right\|$	$\stackrel{\mathrm{N}}{\mathrm{~N}}$	$\left.\left\lvert\, \begin{array}{c} \bar{\circ} \\ \underset{\sim}{2} \end{array}\right.\right)$		$\left\lvert\, \begin{gathered} \bar{o} \\ \underset{\sim}{2} \end{gathered}\right.$		$\underset{N}{\mathrm{~N}}$		N	－	$\stackrel{N}{N}$	$\left\|\begin{array}{c} \stackrel{\circ}{0} \\ \underset{\sim}{2} \end{array}\right\|$	－	－
¢																								
$\underset{\square}{\underline{z}}$																								
	$\left.\frac{N}{\underset{f}{2}} \right\rvert\,$		$\stackrel{N}{\square}$		鲌		N	\％	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	¢	－	®		®		$\stackrel{\stackrel{\rightharpoonup}{7}}{\stackrel{7}{7}}$		$\stackrel{9}{7}$	$\stackrel{\text { g }}{\text { ¢ }}$	$\stackrel{\text { 운 }}{ }$	운	$\stackrel{\square}{\text { ¢ }}$	－
	$\stackrel{\Perp}{\square}$	$\stackrel{\stackrel{8}{8}}{-}$	$\stackrel{\infty}{\sim}$	$\stackrel{\stackrel{\circ}{\circ}}{\stackrel{\circ}{-}}$	$\stackrel{ \pm}{\sim}$	$\begin{array}{\|c\|} \hline 8 \\ \hline 0 \\ 0 \end{array}$	$\stackrel{\infty}{\sim}$	추	추	O	$\stackrel{\circ}{\sim}$	\％	フ	$\stackrel{\bigcirc-8}{+}$	$\underset{\sim}{\sim}$	$\stackrel{\circ}{\circ}$	¢	08	¢	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{\square}{\square}$	¢	은
	$\|\underset{\underset{N}{N}}{ }\|$	$\stackrel{\stackrel{8}{8}}{-} \mid$	N	$\mid \stackrel{\circ}{\circ}$	$\frac{9}{\square}$	$\left.\begin{array}{\|c\|} \hline 8 \\ \hline 0 \\ 0 \end{array} \right\rvert\,$	尔	$\left\lvert\, \begin{aligned} & \dot{g} \\ & 寸 \end{aligned}\right.$	N	물	$\stackrel{\mathrm{R}}{\mathrm{R}}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\infty}$	$\stackrel{\square}{\square}$	$\stackrel{\circ}{\infty}$	$\stackrel{\circ}{\square}$	凩	\％	No	¢	容	믕	$\stackrel{ \pm}{\square}$	$\stackrel{\text { ¢ }}{\stackrel{\text { b }}{5}}$
\pm	0	$\begin{array}{\|l\|} \hline \stackrel{8}{-} \\ \hline \end{array}$	\bigcirc	$\stackrel{\circ}{\circ}$	\bigcirc	$\begin{array}{\|c\|} \hline 0 \\ \hline 0 \\ 0 \\ \hline \end{array}$	－	－	－	－	－	－	－	$\stackrel{\bigcirc-8}{\square}$	\bigcirc	$\stackrel{\circ}{\square}$	－	${ }^{\circ} \mathrm{O}$	\bigcirc	0	0	－	\bigcirc	－
¢																								
$\stackrel{\square}{\underline{\circ}}$																								
	へ／め		$\widehat{\sim}$		®		\＆	\％	$\stackrel{\text { O}}{\stackrel{0}{\circ}}$	$\stackrel{\text { 안 }}{\text { ¢ }}$	$\stackrel{8}{7}$	$\stackrel{\circ}{\square}$	$\begin{gathered} \tilde{m} \\ \underset{\sim}{2} \end{gathered}$		$\stackrel{\sim}{\sim}$		－		¢	－	$\stackrel{\wedge}{\wedge}$	$\stackrel{\sim}{\sim}$	$\stackrel{\text { ® }}{\text { ® }}$	－
	\bigcirc	$\begin{array}{\|c} \hline 8 \\ \hline-8 \end{array}$	\bigcirc	$\stackrel{\circ}{\square}$	－	$\begin{array}{\|c\|} \hline 8 \\ \hline 0 \\ 0 \\ \hline \end{array}$	\bigcirc	－	－	0	\bigcirc	－	－	$\stackrel{8}{-8}$	0	$\stackrel{ٌ}{\square}$	\bigcirc	\％	\bigcirc	－	\bigcirc	－	\bigcirc	0
	\％	$\mid \stackrel{\circ}{\mathbf{O}} \underset{-}{ }$	误	$\stackrel{\circ}{\circ}$	会	$\left.\begin{array}{\|c\|} \hline 8 \\ \hline 0 \\ \hline 0 \end{array} \right\rvert\,$	¢	¢	へ్\％	영	$\hat{\mathrm{t}}$	융	$\underset{\sim}{\infty}$	$\stackrel{8}{\circ}$	－	$\stackrel{ٌ}{\square}$	告	\％	$\stackrel{\sim}{n}$	\％	－ 8	$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{\circ} \\ \stackrel{2}{2} \\ \hline \end{array}$	－	－
志	$\bar{\infty}$	$\left\lvert\, \begin{aligned} & \circ \\ & \hline- \\ & \hline- \end{aligned}\right.$	$\bar{\infty}$	$\stackrel{0}{\sim}$	¢	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	๕	안	은	울		운	๕	$\stackrel{8}{8}$	๕	$\stackrel{\circ}{\circ}$	욱	O－80	$\stackrel{\sim}{\sim}$	운	$\stackrel{\infty}{\square}$	꾹		\％
	年	旁	$\left\|\begin{array}{c} \frac{\square}{y} \\ \frac{y}{3} \\ \frac{3}{4} \end{array}\right\|$	帝		旁		$\begin{gathered} \text { 咅 } \\ \vec{\alpha} \end{gathered}$		$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{訁} \\ \vec{\alpha} \end{array}\right\|$		恄		旁	西	嵅	号	膏	？	㝘		－	［	
	$\left\lvert\, \begin{gathered} \underset{N}{N} \\ \mid \end{gathered}\right.$	$$	$\begin{aligned} & \mathrm{N} \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\stackrel{\rightharpoonup}{3}$	N	$\begin{array}{\|c\|c\|} \substack{5 \\ \hline ⿹ 勹 巳} \\ \hline \end{array}$				3			N্N	合	N	롱	ニ	先		（\％	－	（1）		
						誛												妇d						

	$\stackrel{m}{\stackrel{m}{N}}$		$\stackrel{m}{\stackrel{m}{N}} \mid$		$\begin{array}{\|c} \hline 8 \\ \hline \mathbf{N} \\ \hline \end{array}$		$\left\|\begin{array}{l} \stackrel{N}{2} \\ \underset{\sim}{2} \end{array}\right\|$	$\left.\begin{aligned} & 0 \\ & \stackrel{0}{N} \\ & N \end{aligned} \right\rvert\,$	$\bar{\sim}$	$\stackrel{\infty}{\text { m }}$		（	$\left\|\begin{array}{l} 0 \\ \mathbf{N} \\ \mathbf{N} \end{array}\right\|$		$\begin{gathered} \substack{0 \\ \hline \mathbf{N} \\ \hline} \end{gathered}$		$\begin{array}{\|c} \substack{0 \\ \mathbf{C}\\ } \\ \hline \end{array}$			O		O－0		¢
	$\begin{array}{\|c} \hline \\ \underset{\sim}{2} \end{array}$		$\left\lvert\, \begin{gathered} \dot{O} \\ \underset{子}{2} \end{gathered}\right.$		200		$\left\|\begin{array}{c} N \\ N \\ 0 \end{array}\right\|$	$\left\lvert\,\right.$	\％	앙	N	눗	5		$\stackrel{5}{7}$		N		\％	웅		응	N	윳
¢																								
$\underset{y}{2}$																								
这氟衰要	$\stackrel{\circ}{\sim}$		$\stackrel{\circ}{\sim}$		유N		$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{\square}{\text {－}}$	－	\％	ㅇ్m	$\stackrel{\circ}{\circ}$		$\stackrel{\circ}{\sim}$		$\stackrel{\circ}{\sim}$		－	\％	\％	융	N	\％
	F	$\left\lvert\, \begin{array}{\|c} \hline 8 \\ -8 \\ \hline \end{array}\right.$	g	$\stackrel{\infty}{\stackrel{\infty}{\sim}} \underset{\sim}{c}$	is	$\begin{array}{\|c} \hline 0 \\ 0 \\ 0 \end{array}$	ก	앙	8	¢	\cdots	암	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{+}$	웅	$\stackrel{0}{\stackrel{0}{\bullet}}$	$\stackrel{\sim}{\sim}$	$\begin{array}{\|c} 0 \\ 0 \\ 0 \\ 0 \end{array}$	욲	윢	¢	윤	$\stackrel{\square}{\square}$	－
$\begin{array}{\|c} \frac{2}{5} \\ \end{array}$	®	$\left\lvert\, \begin{array}{\|c\|} \hline 8 \\ -8 \\ \hline \end{array}\right.$	\％	$\begin{aligned} & \infty \\ & \stackrel{\sim}{\sim} \\ & \underset{\sim}{2} \end{aligned}$	๕	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}\right.$	¢	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	¢	¢	8	$\stackrel{\infty}{\sim}$	$\stackrel{8}{-}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{0}$	8	$\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	\％	8	\bigcirc	응	¢	－
\pm	$\frac{\circ}{7}$	$\left\|\begin{array}{\|c} \hline 8 \\ - \\ - \end{array}\right\|$	$\stackrel{\circ}{-}$	$\begin{array}{\|c\|} \hline \infty \\ \stackrel{n}{c} \\ \underset{\sim}{2} \end{array}$	－	$\left\|\begin{array}{\|c\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}\right\|$	$\stackrel{\text { g }}{7}$	¢	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{\sim}{饣}$	$\stackrel{8}{2}$	\bigcirc	$\stackrel{\bigcirc-}{\square}$	\bigcirc	$\stackrel{\infty}{\stackrel{\sim}{\sim}}$	$\bar{\infty}$	$\begin{array}{\|c} 0 \\ 0 \\ 0 \\ 0 \end{array}$	あ	®	む	8	N	끅
$\stackrel{y}{\square}$																								
H																								
	주		$\stackrel{\sim}{N}$		合		$\stackrel{\sim}{\sim}$	\％	～	－	へ̀m	$\stackrel{\circ}{\sim}$	$\stackrel{\circ}{\circ}$		$\stackrel{\varrho}{\circ}$		$\stackrel{\sim}{\sim}$		$\stackrel{\sim}{\sim}$	¢	\％	\％	N／N్ల	ర్లి
	$\stackrel{\text { F }}{ }$	$\left\|\begin{array}{\|c} \hline 8 \\ -8 \end{array}\right\|$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \stackrel{\infty}{0} \\ & \stackrel{\sim}{c} \\ & \hline \end{aligned}$	$\stackrel{\sim}{\sim}$	$\left\|\begin{array}{\|c} 1 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\underset{F}{F}$	암	in	$\stackrel{\circ}{\circ}$	๕	은	\bigcirc	$\stackrel{\circ}{\circ}$	8	$\stackrel{\infty}{\stackrel{0}{\sim}}$	8	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	N	\bigcirc	$\bar{\infty}$	®	응	웅
$\begin{array}{\|l\|l\|} \hline \frac{5}{4} & \frac{z}{5} \\ \hline \end{array}$	～	$\left\|\begin{array}{\|c} \hline 8 \\ -8 \end{array}\right\|$	\％	$\begin{aligned} & \infty \\ & \stackrel{n}{c} \\ & \sim \end{aligned}$	¢	$\left\lvert\, \begin{array}{\|c} 10 \\ 0 \\ 0 \\ \hline \end{array}\right.$	$\overline{5}$	앙	\because	¢	\bigcirc	암	\otimes	$\stackrel{\square}{+}$	®	$\stackrel{\infty}{\stackrel{\circ}{\bullet}}$	ำ	$\begin{array}{\|c} 1 \\ 0 \\ 0 \\ 0 \end{array}$	©	¢	б＇	8	$\stackrel{\mathrm{m}}{=}$	욱
\pm	$\bar{\square}$	$\left\|\begin{array}{\|c} \hline 8 \\ -8 \\ - \end{array}\right\|$	$\bar{\circ}$	$\begin{array}{\|c} \infty \\ \stackrel{n}{c} \\ \underset{\sim}{2} \end{array}$		$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	\cdots	ㅇ	※	¢	\％	$\stackrel{\circ}{-}$	$\widehat{6}$	－	¢	$\stackrel{\infty}{\stackrel{\sim}{\sim}}$	\sim	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\bar{\infty}$	¢	8	8	$\stackrel{N}{\sim}$	운
	$\left\|\begin{array}{c} \mathrm{N} \\ \hat{N} \end{array}\right\|$		$\left\|\begin{array}{c} \hat{N} \\ \underset{N}{2} \end{array}\right\|$		$\left\|\begin{array}{c} \stackrel{\circ}{O} \\ \underset{\sim}{2} \end{array}\right\|$		$\left\|\begin{array}{c} 0 \\ \underset{\sim}{2} \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ \stackrel{0}{2} \\ \underset{\sim}{2} \end{array}\right\|$		$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & N \end{aligned}\right.$	$\underset{\sim}{\sim}$	O	$\left\|\begin{array}{c} 10 \\ i n \\ \stackrel{n}{2} \end{array}\right\|$		$\stackrel{i}{2}$		$\stackrel{\Gamma}{\infty}$		প্ল্లী	O		융		ㅇ్ల్ర
¢																								
－																								
	$\mid \stackrel{\underset{\sim}{\mathrm{N}}}{\substack{2}}$		－さّ		$\stackrel{\text { N }}{\stackrel{\text { \％}}{\sim}}$		$\begin{gathered} \infty \\ \stackrel{\rightharpoonup}{f} \end{gathered}$	$\stackrel{\sim}{\square}$	－	$\stackrel{\circ}{6}$	$\stackrel{0}{*}$	$\stackrel{\sim}{\sim}$	付		耑		$\stackrel{\text { O}}{\stackrel{\circ}{\circ}}$		$\stackrel{m}{\square}$	$\stackrel{\text { N }}{\sim}$	$\stackrel{\text { N }}{\stackrel{1}{7}}$	$\stackrel{\circ}{7}$	\％	륚
	®8	$\left\lvert\, \begin{array}{\|c} \hline 8 \\ -8 \\ \hline \end{array}\right.$	®	$\begin{array}{\|c} \infty \\ \stackrel{n}{c} \\ \underset{\sim}{2} \end{array}$	\＆	$\begin{array}{\|c\|} \hline 0 \\ 0 \\ 0 \\ \hline \end{array}$	9	앙	$\stackrel{\infty}{\sim}$	is	岕	is	¢	$\stackrel{\circ}{\square}$	¢	$\stackrel{\infty}{\bullet}$	®®	$\begin{aligned} & \hline 8 \\ & 0 \\ & 0 \end{aligned}$	\％	O	\％	\％	¢	is
	$\begin{array}{\|l\|} \hline \frac{0}{7} \\ \hline \end{array}$	$\left\|\begin{array}{\|c\|} \hline 8 \\ -8 \\ - \end{array}\right\|$	$\stackrel{0}{\square}$	$\left\|\begin{array}{c} \infty \\ \stackrel{\sim}{c} \\ \subset \end{array}\right\|$	$$	$\left\lvert\, \begin{array}{\|c\|} \hline 0 \\ \hline 0 \\ \hline \end{array}\right.$	$\stackrel{\sim}{\sim}$	$\stackrel{\stackrel{\rightharpoonup}{\sim}}{\sim}$	尔	연	$\begin{aligned} & \stackrel{m}{6} \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{O} \\ & \stackrel{0}{6} \end{aligned}\right.$	®\％	$\stackrel{8}{+}$	※	$\stackrel{\infty}{\stackrel{0}{+}}$	®	$\begin{array}{\|c} \hline 0 \\ \hline 0 \\ \hline \end{array}$	$\stackrel{\circ}{\circ}$	문	응	응	$\stackrel{\circ}{\circ}$	물
\pm	ก	$\mid \stackrel{\circ}{\circ}$	～	$\stackrel{\infty}{\stackrel{\infty}{n}} \underset{\sim}{\square}$	8	$\left\lvert\, \begin{array}{\|c} \hline 0 \\ \hline 0 \\ \hline \end{array}\right.$	$\bar{¢}$	－	๕	8	N	\bigcirc	$\stackrel{\circ}{\text { ¢ }}$	\bigcirc	\％	$\stackrel{\infty}{\bullet}$	¢	－80	in	8	8	\％	¢	？
呂																								
\＃																								
$\begin{array}{\|c} \bar{N} \\ N_{2} \\ N_{\alpha} \\ \hline \alpha \\ \hline \end{array}$	$\underset{\sim}{\infty}$		O		\％		N	응	끙	응	$\stackrel{\%}{\square}$	$\stackrel{\circ}{\stackrel{\circ}{7}}$	$\begin{array}{\|c} \overline{\hat{\sigma}} \\ \stackrel{\rightharpoonup}{2} \\ \hline \end{array}$		$\stackrel{\bar{¢}}{\stackrel{-}{*}}$		$\stackrel{\text { ¢ }}{\sim}$		$\stackrel{\sim}{\circ}$	융	\％	ి	¢	－
	$\stackrel{\infty}{\sim}$	$\left\lvert\, \begin{array}{\|c\|} \hline 8 \\ \hline-9 \end{array}\right.$	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{0}$	$\bar{\sim}$	$0 \begin{aligned} & 0 \\ & \hline 0 \\ & \hline 0 \end{aligned}$	$\bar{\sim}$	$\stackrel{\sim}{\sim}$	N	ㄴ	N	유	$\stackrel{\infty}{\circ}$	$\stackrel{8}{\square}$	∞		¢	－	$\stackrel{\square}{\circ}$	\bigcirc	$\stackrel{\sim}{\sim}$	\bigcirc	©	¢
	연	$\left\|\begin{array}{\|c\|} \hline \mathrm{O} \\ -1 \end{array}\right\|$	연	$\stackrel{\circ}{\sim}$	N	$\stackrel{\circ}{\circ}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\stackrel{\circ}{\infty}$	～్®	\％		앙	$\stackrel{8}{\square}$	$\stackrel{8}{8}$	$\stackrel{8}{7}$	$\stackrel{\sim}{0}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \hline 0 \\ & \hline ⿳ 亠 口 子 阝 \\ & \hline 0 \end{aligned}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	®	$\stackrel{\square}{\circ}$	$\stackrel{\text { ¢ }}{\text { ̇ }}$	－
\pm	$\stackrel{8}{6}$	$\stackrel{+}{\square}$	$\stackrel{8}{8}$	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{\sim}$	－	N	®	$\bar{\infty}$	¢	N	8	®	$\stackrel{8}{-8}$	毋		\＆	－	®	안	¢	은	$\stackrel{\text { N }}{ }$	꾸
	年	$\left\|\begin{array}{l} \frac{b}{4} \\ \text { 咅 } \end{array}\right\|$		誉		帝		䔍		気		旁		旁	$\begin{aligned} & \frac{\square}{y} \\ & \frac{y}{y} \\ & \frac{3}{4} \end{aligned}$	亳	咢	亳		岩		芸	？	－
	$\left\lvert\, \begin{gathered} \underset{N}{N} \\ \hline \end{gathered}\right.$	$\left\|\begin{array}{\|c\|} \hline 0 \\ 3 \\ 0 \end{array}\right\|$	$\begin{array}{\|c} \mathbf{N} \\ \text { No } \\ \hline \end{array}$	롱		$\begin{array}{\|c\|} \hline \frac{5}{\hat{3}} \\ \frac{b}{0} \end{array}$	$\begin{gathered} \text { N } \\ \text { N } \end{gathered}$		－	㛈	\％	（1）	N	O	N	롱	N	20	N	気	¢	（1）	\％	（1）
						壮d												（ ${ }^{\text {d }}$						

Appendix C

ODOT Turn Lane Design Criteria

TURNING LANE DESIGN	401-7
	REFERENCE SECTION
	$401.6 .1 \& 401.6 .3$

LEFT TURN LANE - NO MEDIAN OR MEDIAN WIDTH < WL

LEFT TURN LANE - MEDIAN WIDTH $>=W_{L}$

RIGHT TURN LANE

- See Flgures 401-9 and 401-10 to copmpute length.
*s May be reduced or ellminated in urban areas if intersection spacing or storage is constraining
** Diverging toper
$W_{\mathrm{L}}=$ Turn Lane Width
October 2004

OFFSET LEFT TURN LANE	$401-8$
	REFERENCE SECTION
	$401.6 .1 \& 401.6 .3$

BASIS FOR COMPUTING LENGTH OF TURN LANES	$401-9$
	REFERENCE SECTION

Type of Traffic Control	Design Speed		
	30-35	$40-65$	
	All	Low	
Signalized	A	$* *$ B or C	$* *$ B or C
Unsignalized Stopped Crossroad	A	A	A
Unsignalized Through Road	A	B	$* *$ B or C

* Low is considered 10% or less of approach traffic volume
** Whichever is greater

CONDITION A	STORAGE ONLY
Length $=50^{\prime}$ (diverging taper) + Storage Length (Figure 401-10)	

CONDITION B	HIGH SPEED DECELERATION ONLY
Design Speed	Length (including 50' Diverging Taper)
40	125
45	175
50	225
55	285
60	345
65	405

CONDITION C	MODERATE SPEED DECELERATION AND STORAGE	
Design Speed	Length (including 50' Diverging Taper)	
40	$115+$ Storage Length (Figure 401-10)	
45	125	
50	145	
55	165	
60	185	
65	205	

For explanation, see Turn Lane Design Example

STORAGE LENGTH AT INTERSECTIONS	401-10
	REFERENCE SECTION $\mathrm{m01.6.1} \mathrm{\& 401.6.3}$

* AVERAGE NO. OF VEHICLES/CYCLE	REQUIRED LENGTH (FT.)
1	50
2	100
3	150
4	175
5	200
6	250
7	275
8	325
9	350
10	400
11	450
12	475
13	500
14	525
15	550
16	

* AVERAGE VEHICLES PER CYCLE =

* AVERAGE NO. OF VEHICLES/CYCLE	REQUIRED LENGTH (FT.)
17	600
18	625
19	650
20	675
21	725
22	750
23	775
24	800
25	825
30	1125
35	1250
40	1400
45	1550
50	1700
55	1850
60	

DHV (TURNING LANE
CYCLES/HOUR

IF CYCLES ARE UNKNOWN ASSUME:
UNSIGNALIZED OR 2 PHASE $=60$ CYCLES/HOUR
3 PHASE = 40 CYCLES/HOUR
4 PHASE $=30 \mathrm{CYCLES} / \mathrm{HOUR}$

Example - Turn Lane Design Using Figures 401-9 and 401-10

Problem

Calculate the length of an exclusive left turn lane.
Traffic Control: Signalized
Design Speed: 55 mph
Cycle Length: 90 sec

Determine Storage and Turn Lane Lengths

Turn Lane Demand (High/Low) $=\frac{\left(200 \frac{v e h}{h r}\right)}{200 \frac{v e h}{h r}+680 \frac{v e h}{h r}}=23 \%$ = High Demand
Refer to the matrix in Figure 401-9.
For Signalized, 55 mph , High Demand, use Method B or C, whichever is greater.
Method B - For 55 mph , a 285' turn lane length is required (235' storage +50 ' taper).
Method C - For $55 \mathrm{mph}, 165$ ' + calculated storage length in Figure 401-10.
Average Vehicles per Cycle $=\frac{\left(200 \frac{v e h}{h r}\right) *\left(90 \frac{\mathrm{sec}}{c y c}\right)}{3600 \mathrm{sec} / \mathrm{hr}}=5 \mathrm{veh} / \mathrm{cyc} \rightarrow 200$,
Total Length $=165^{\prime}+200^{\prime}=365^{\prime}\left(315^{\prime}\right.$ storage $+50^{\prime}$ taper $)$
Method C $=365^{\prime}>$ Method B $=285^{\prime}$

Use Method C

Check Length for Thru-Block

Refer to Figure 401-10 to calculate thru lane(s) queue distance.
$680 \mathrm{veh} / \mathrm{hr} / 2$ lanes $=340 \mathrm{veh} / \mathrm{hr} / \mathrm{ln}$

Average Vehicles per Cycle $=\frac{\left(340 \frac{v e h}{h r}\right) *\left(90 \frac{\mathrm{sec}}{c y c}\right)}{3600 \mathrm{sec} / \mathrm{hr}}=9 \mathrm{veh} / \mathrm{cyc} / \ln \rightarrow \mathbf{3 5 0} \mathrm{ft} / \mathrm{ln}$
Thru Block $=350^{\prime}>$ Method C Storage $=315^{\prime} \rightarrow$ Turn Lane Blocked
Use 350' storage $+50^{\prime}$ taper $=400^{\prime}$ ' Turn Lane Length

Appendix D

SR 752 \& Business Place Traffic Data

2112 Case Parkway South \#7
Twinsburg, Ohio 44087 Transportation Manangement Services

File Name : TC OH 752 and N. Commerce St. 080922 DJS Site Code : 00000000 Start Date : 8/9/2022 Page No : 2

- Buses

	NORTH COMMERCE STREET From North					OH 752 From East					NORTH COMMERCE STREET From South					$\begin{aligned} & \text { OH } 752 \\ & \text { From West } \end{aligned}$					
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
10:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00 AM	0	0	0	0	0	0	22	4	0	26	3	0	2	0	5	3	22	1	0	26	57
11:15 AM	0	0	0	0	0	0	37	1	0	38	6	0	2	0	8	5	25	0	0	30	76
11:30 AM	1	0	1	0	2	1	29	5	0	35	2	0	2	0	4	4	28	0	0	32	73
11:45 AM	0	0	0	0	0	0	36	4	0	40	6	0	2	0	8	6	33	0	0	39	87
Total	1	0	1	0	2	1	124	14	0	139	17	0	8	0	25	18	108	1	0	127	293
12:00 PM	1	0	1	0	2	2	45	3	0	50	3	0	0	0	3	3	40	0	0	43	98
12:15 PM	2	0	0	0	2	1	34	6	0	41	3	0	3	0	6	6	29	1	0	36	85
12:30 PM	2	0	0	0	2	0	40	0	0	40	3	0	5	0	8	5	22	0	0	27	77
12:45 PM	0	0	0	0	0	1	20	7	0	28	2	0	2	0	4	1	33	1	0	35	67
Total	5	0	1	0	6	4	139	16	0	159	11	0	10	0	21	15	124	2	0	141	327
01:00 PM	0	0	0	0	0	0	34	4	0	38	7	0	0	0	7	7	30	2	0	39	84
01:15 PM	0	0	1	0	1	0	24	2	0	26	1	1	2	0	4	2	38	1	0	41	72
01:30 PM	0	0	0	0	0	0	50	4	0	54	5	0	4	0	9	6	32	0	0	38	101
01:45 PM	0	0	0	0	0	0	28	2	0	30	2	0	4	0	6	3	23	1	0	27	63
Total	0	0	1	0	1	0	136	12	0	148	15	1	10	0	26	18	123	4	0	145	320
02:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

File Name : TC OH 752 and N. Commerce St. 080922 DJS Site Code : 00000000 Start Date : 8/9/2022 Start Date
Page No Groups Printed- Cars - Trucks - Buses

	NORTH COMMERCE STREET From North					$\text { OH } 752$ From East					NORTH COMMERCE STREET From South					OH 752 From West					
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
Peak Hour for Entire Intersection Begins at 07:00 AM																					
07:00 AM	0	0	0	0	0	0	33	2	0	35	0	0	2	0	2	1	26	3	0	30	67
07:15 AM	0	0	0	0	0	0	38	1	0	39	0	0	0	0	0	3	33	0	0	36	75
07:30 AM	0	0	0	0	0	2	41	4	0	47	2	0	1	0	3	3	33	4	0	40	90
07:45 AM	0	0	0	0	0	2	29	3	0	34	2	0	2	0	4	11	21	1	0	33	71
Total Volume	0	0	0	0	0	4	141	10	0	155	4	0	5	0	9	18	113	8	0	139	303
\% App. Total	0	0	0	0		2.6	91	6.5	0		44.4	0	55.6	0		12.9	81.3	5.8	0		
PHF	. 000	. 000	. 000	. 000	. 000	. 500	. 860	. 625	. 000	. 824	. 500	. 000	. 625	. 000	. 563	. 409	. 856	. 500	. 000	. 869	. 842
Cars	0	0	0	0	0	4	136	10	0	150	4	0	3	0	7	18	111	8	0	137	294
\% Cars	0	0	0	0	0	100	96.5	100	0	96.8	100	0	60.0	0	77.8	100	98.2	100	0	98.6	97.0
Trucks	0	0	0	0	0	0	5	0	0	5	0	0	2	0	2	0	2	0	0	2	9
\% Trucks	0	0	0	0	0	0	3.5	0	0	3.2	0	0	40.0	0	22.2	0	1.8	0	0	1.4	3.0
Buses	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% Buses	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

NORTH COMMERCE STREET \quad OH 752
File Name :TC OH 752 and N. Commerce St. 080922 DJS
Site Code $: 00000000$
Start Date $: 8 / 9 / 2022$
Page No $: 4$

0000008
000000

0000008000000

ゥ
0000008000000
Peak Hour Analysis From 03:45 PM to 04:30 PM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 03:45 PM
03:45 PM
04:00 PM
04:00 PM
04:15 PM
04:30 PM
$\begin{array}{r}\hline \text { Total Volume } \\ \text { \% App. Total } \\ \hline \text { PHF }\end{array}$
$\frac{\varphi}{\omega}$
0
0
0
0
先
Trucks
\% Trucks

			N.Commerce St. FROM NORTH						$\begin{aligned} & \text { N.Commerce St. } \\ & \text { FROM SOUTH } \end{aligned}$						TOTAL NORTH SOUTH	$\begin{gathered} \text { OH } 752 \\ \text { FROM EAST } \\ \hline \end{gathered}$						$\begin{gathered} \text { OH } 752 \\ \text { FROM WEST } \end{gathered}$						TOTAL EAST WEST	TOTAL ALL DIREC.
			Left	Thru	Right	Total	Trk	Bus	Left	Thru	Right	Total	Trk	Bus		Left	Thru	Right	Total	Trk	Bus	Left	Thru	Right	Total	Trk	Bus		
	2022	Raw	0	0	0	0			5	0	4	9			9	10	141	4	155			8	113	18	139			294	303
	Covid	Factor	1.000	1.000	1.000				1.000	1.000	1.000					1.000	1.000	1.000				1.000	1.000	1.000					
	2022	Adjusted	0	0	0	0			5	0	4	9			9	10	141	4	155			8	113	18	139			294	303
	DHV	Factor	1.137	1.137	1.137				1.137	1.137	1.137					1.137	1.137	1.137				1.137	1.137	1.137					
	2022	No Build	0	0	0	0			6	0	5	10			10	11	160	5	176			9	128	20	158			334	344
	Growth	Factor	0.000	0.000	0.000				0.000	0.000	0.000					0.000	0.020	0.000				0.000	0.020	0.000					
	2024	Adj + Growth+DHV	0	0	0	0			6	0	5	10			10	11	167	5	183			9	134	20	163			346	356
	Phase 1	Round	0	0	0	0			10	0	10	20			20	10	170	10	190			10	130	20	160			350	370
	2024	Adj +Growth+DHV	0	0	0	0			6	0	5	10			10	11	167	5	183			9	134	20	163			346	356
	Opening Year	Round	0	0	0	0			10	0	10	20			20	10	170	10	190			10	130	20	160			350	370
	2044	Adj +Growth+DHV	0	0	0	0			6	0	5	10			10	11	231	5	247			9	185	20	215			461	472
	Design Year	Round	0	0	0	0			10	0	10	20			20	10	230	10	250			10	180	20	210			460	480
	2022	Raw	3	0	4	7			10	0	13	23			30	11	171	4	186			0	201	6	207			393	423
	Covid	Factor	1.000	1.000	1.000				1.000	1.000	1.000					1.000	1.000	1.000				1.000	1.000	1.000					
	2022	Adjusted	3	0	4	7			10	0	13	23			30	11	171	4	186			0	201	6	207			393	423
	DHV	Factor	1.137	1.137	1.137				1.137	1.137	1.137					1.137	1.137	1.137				1.137	1.137	1.137					
	2022	No Build	3	0	5	8			11	0	15	26			34	13	194	5	211			0	229	7	235			447	481
	Growth	Factor	0.000	0.000	0.000				0.000	0.000	0.000					0.000	0.020	0.000				0.000	0.020	0.000					
	2024	Adj+Growth+DHV	3	0	5	8			11	0	15	26			34	13	202	5	219			0	238	7	244			464	498
	Phase 1	Round	10	0	10	20			10	0	10	20			40	10	200	10	220			0	240	10	250			470	510
	2024	Adj+Growth + DHV	3	0	5	8			11	0	15	26			34	13	202	5	219			0	238	7	244			464	498
	Opening Year	Round	10	0	10	20			10	0	10	20			40	10	200	10	220			0	240	10	250			470	510
	2044	Adj+Growth+DHV	3	0	5	8			11	0	15	26			34	13	280	5	297			0	329	7	336			633	667
	Design Year	Round	10	0	10	20			10	0	10	20			40	10	280	10	300			0	330	10	340			640	680

Appendix E

Trip Generation Calculation Worksheet

DHL SITE GENERATED TRAFFIC CALCULATIONS (10/24/2022)

Appendix \mathbf{F}

No-Build Capacity Analysis Worksheets - 2024

General Information

Analyst	ABC
Agency/Co.	TMS Engineers, Inc.
Date Performed	$8 / 9 / 2022$
Analysis Year	2024
Time Analyzed	AM Peak
Intersection Orientation	East-West
Project Description	No-Build Conditions

Site Information

Intersection	SR $752 \&$ Business Place
Jurisdiction	Ashville, OH
East/West Street	State Route 752
North/South Street	Business Place North
Peak Hour Factor	0.84
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		10	148	20		10	187	10		10	0	10		0	0	1
Percent Heavy Vehicles (\%)		2				3				22	22	22		0	0	0
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.12				4.13				7.32	6.72	6.42		7.10	6.50	6.20
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.22				2.23				3.70	4.20	3.50		3.50	4.00	3.30

Delay, Queue Length, and Level of Service

General Information

Analyst	ABC
Agency/Co.	TMS Engineers, Inc.
Date Performed	$8 / 9 / 2022$
Analysis Year	2024
Time Analyzed	PM Peak
Intersection Orientation	East-West
Project Description	No-Build Conditions

Site Information

Intersection	SR $752 \&$ Business Place
Jurisdiction	Ashville, OH
East/West Street	State Route 752
North/South Street	Business Place North
Peak Hour Factor	0.83
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		0	258	10		10	218	10		10	0	10		10	0	10
Percent Heavy Vehicles (\%)		2				2				9	9	9		14	14	14
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.12				4.12				7.19	6.59	6.29		7.24	6.64	6.34
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.22				2.22				3.58	4.08	3.38		3.63	4.13	3.43

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	0			12			24				24	
Capacity, c (veh/h)	1288			1237			502				505	
v/c Ratio	0.00			0.01			0.05				0.05	
95\% Queue Length, Q_{95} (veh)	0.0			0.0			0.2				0.2	
Control Delay (s/veh)	7.8	0.0	0.0	7.9	0.1	0.1	12.5				12.5	
Level of Service (LOS)	A	A	A	A	A	A	B				B	
Approach Delay (s/veh)	0.0			0.4			12.5		12.5			
Approach LOS	A			A			B		B			

Appendix G

Build Capacity Analysis Worksheets - 2024

General Information

Analyst	ABC
Agency/Co.	TMS Engineers, Inc.
Date Performed	$8 / 9 / 2022$
Analysis Year	2024
Time Analyzed	AM Peak
Intersection Orientation	East-West
Project Description	Build Conditions

Site Information

Intersection	SR $752 \&$ Business Place
Jurisdiction	Ashville, OH
East/West Street	State Route 752
North/South Street	Business Place North
Peak Hour Factor	0.84
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		10	168	35		41	197	10		41	0	30		0	0	1
Percent Heavy Vehicles (\%)		2				3				22	22	22		0	0	0
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.12				4.13				7.32	6.72	6.42		7.10	6.50	6.20
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.22				2.23				3.70	4.20	3.50		3.50	4.00	3.30

Delay, Queue Length, and Level of Service

General Information

Analyst	ABC
Agency/Co.	TMS Engineers, Inc.
Date Performed	$8 / 9 / 2022$
Analysis Year	2024
Time Analyzed	PM Peak
Intersection Orientation	East-West
Project Description	Build Conditions

Site Information

Intersection	SR 752 \& Business Place
Jurisdiction	Ashville, OH
East/West Street	State Route 752
North/South Street	Business Place North
Peak Hour Factor	0.83
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		0	274	27		63	235	10		26	0	27		10	0	10
Percent Heavy Vehicles (\%)		2				2				9	9	9		14	14	14
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.12				4.12				7.19	6.59	6.29		7.24	6.64	6.34
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.22				2.22				3.58	4.08	3.38		3.63	4.13	3.43

Delay, Queue Length, and Level of Service

Appendix H

Build Capacity Analysis Worksheets - 2024 w/ Improvements

Appendix I

No-Build Capacity Analysis Worksheets - 2044

General Information

Analyst	ABC
Agency/Co.	TMS Engineers, Inc.
Date Performed	$8 / 9 / 2022$
Analysis Year	2044
Time Analyzed	AM Peak
Intersection Orientation	East-West
Project Description	No-Build Conditions

Site Information

Intersection	SR $752 \&$ Business Place
Jurisdiction	Ashville, OH
East/West Street	State Route 752
North/South Street	Business Place North
Peak Hour Factor	0.84
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		10	198	20		10	247	10		10	0	10		0	0	1
Percent Heavy Vehicles (\%)		2				3				22	22	22		0	0	0
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.12				4.13				7.32	6.72	6.42		7.10	6.50	6.20
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.22				2.23				3.70	4.20	3.50		3.50	4.00	3.30

Delay, Queue Length, and Level of Service

General Information

Analyst	ABC
Agency/Co.	TMS Engineers, Inc.
Date Performed	$8 / 9 / 2022$
Analysis Year	2044
Time Analyzed	PM Peak
Intersection Orientation	East-West
Project Description	No-Build Conditions

Site Information

Intersection	SR $752 \&$ Business Place
Jurisdiction	Ashville, OH
East/West Street	State Route 752
North/South Street	Business Place North
Peak Hour Factor	0.83
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		0	348	10		10	298	10		10	0	10		10	0	10
Percent Heavy Vehicles (\%)		2				2				9	9	9		14	14	14
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.12				4.12				7.19	6.59	6.29		7.24	6.64	6.34
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.22				2.22				3.58	4.08	3.38		3.63	4.13	3.43

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	0			12			24				24	
Capacity, c (veh/h)	1187			1128			386				388	
v / c Ratio	0.00			0.01			0.06				0.06	
95\% Queue Length, Q_{95} (veh)	0.0			0.0			0.2				0.2	
Control Delay (s/veh)	8.0	0.0	0.0	8.2	0.1	0.1	14.9				14.9	
Level of Service (LOS)	A	A	A	A	A	A	B				B	
Approach Delay (s/veh)	0.0			0.4			14.9		14.9			
Approach LOS	A			A			B		B			

Appendix J

Build Capacity Analysis Worksheets - 2044

General Information

Analyst	ABC
Agency/Co.	TMS Engineers, Inc.
Date Performed	$8 / 9 / 2022$
Analysis Year	2044
Time Analyzed	AM Peak
Intersection Orientation	East-West
Project Description	Build Conditions

Site Information

Intersection	SR $752 \&$ Business Place
Jurisdiction	Ashville, OH
East/West Street	State Route 752
North/South Street	Business Place North
Peak Hour Factor	0.84
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		10	218	35		41	257	10		41	0	30		0	0	1
Percent Heavy Vehicles (\%)		2				3				22	22	22		0	0	0
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.12				4.13				7.32	6.72	6.42		7.10	6.50	6.20
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.22				2.23				3.70	4.20	3.50		3.50	4.00	3.30

Delay, Queue Length, and Level of Service

General Information

Analyst	ABC
Agency/Co.	TMS Engineers, Inc.
Date Performed	$8 / 9 / 2022$
Analysis Year	2044
Time Analyzed	PM Peak
Intersection Orientation	East-West
Project Description	Build Conditions

Site Information

Intersection	SR 752 \& Business Place
Jurisdiction	Ashville, OH
East/West Street	State Route 752
North/South Street	Business Place North
Peak Hour Factor	0.83
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR													
Volume (veh/h)		0	364	27		63	315	10		26	0	27		10	0	10
Percent Heavy Vehicles (\%)		2				2				9	9	9		14	14	14
Proportion Time Blocked																
Percent Grade (\%)									0				0			
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.12				4.12				7.19	6.59	6.29		7.24	6.64	6.34
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.22				2.22				3.58	4.08	3.38		3.63	4.13	3.43

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	0			76			64				24	
Capacity, c (veh/h)	1167			1091			298				291	
v/c Ratio	0.00			0.07			0.21				0.08	
95\% Queue Length, Q_{95} (veh)	0.0			0.2			0.8				0.3	
Control Delay (s/veh)	8.1	0.0	0.0	8.5	0.8	0.8	20.3				18.5	
Level of Service (LOS)	A	A	A	A	A	A	C				C	
Approach Delay (s/veh)	0.0			2.0			20.3		18.5			
Approach LOS	A			A			C		C			

General Information									Intersection Information							
Agency		TMS Engineers, Inc.							Duration, h		0.250			$\downarrow 1$		
Analyst		ABC		Analysis Date		Apr 7, 2022			Area Type		Other		\rightarrow	mits		
Jurisdiction		Ashville, OH		Time Period		PM Peak			PHF		0.88					
Urban Street		SR 752		Analysis Year		2044			Analysis Period		1> 7:00					
Intersection		@ SR 316/Ashville Pike		File Name		6_PM 44 752-316.xus							5			
Project Description		Build Conditions														
Demand Information				EB			WB			NB			SB			
Approach Movement				L	T	R	L	T	R	L	T	R	L	T	R	
Demand (v), veh/h				139	255	97	120	248	8 130	84	200	100	120	330	196	
Signal Information				Green	-7		$\underset{\underset{k}{3}}{\stackrel{3}{\varkappa}}$		UN	\sum_{i}					Δ	
Cycle, s	129.4	Reference Phase	2													
Offset, s	0	Reference Point	End		8.0	2.2		38.0	7.8	2.1	48.3					
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow	4.5	0.0	3.5	3.5	0.0	3.5						
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	0.0	2.0	2.0	0.0	2.0		5	6			
Timer Results				EBL		EBT	WBL	WBT		NBL	NBT		SBL	SBT		
Assigned Phase				5		2	1	6		3	8		7		4	
Case Number				1.1		4.0	1.1	4.0		1.1	4.0		1.1		0	
Phase Duration, s				16.7		45.7	14.5	43.5		13.3	53.8		15.4		.9	
Change Period, ($Y+R_{\text {c }}$), s				5.5		6.5	6.5	6.5		5.5	6.5		6.5		. 5	
Max Allow Headway (MAH), s				3.1		3.1	3.1	3.1		3.1	3.1		3.1		. 1	
Queue Clearance Time ($g s$), s				10.5		30.3	9.4	33.4		6.4	22.7		8.4		.7	
Green Extension Time ($g e$), s				0.3		1.7	0.0	1.7		0.2	0.0		0.2	1.3		
Phase Call Probability				1.00		1.00	0.99	1.00		0.97	1.00		0.99	1.00		
Max Out Probability				0.00		0.00	1.00	0.00		0.00	1.00		0.00 0.00			
Movement Group Results				EB			WB			NB			SB			
Approach Movement				L	T	R	L	T	R	L	T	R	L	T	R	
Assigned Movement				5	2	12	1	6	16	3	8	18	7	4	14	
Adjusted Flow Rate (v), veh/h				158	400		136	430		95	341		136	598		
Adjusted Saturation Flow Rate (s), veh/h/ln				1711	1711		1753	1733		1753	1737		1753	1725		
Queue Service Time ($g s$), s				8.5	28.3		7.4	31.4		4.4	20.7		6.4	43.7		
Cycle Queue Clearance Time (g_{c}), s				8.5	28.3		7.4	31.4		4.4	20.7		6.4	43.7		
Green Ratio (g/C)				0.39	0.30		0.36	0.29		0.44	0.37		0.45	0.38		
Capacity (c), veh/h				251	529		248	501		192	639		405	666		
Volume-to-Capacity Ratio (X)				0.630	0.756		0.551	0.857		0.498	0.533		0.337	0.898		
Back of Queue (Q), ft/ln (95 th percentile)																
Back of Queue (Q), veh/ln (95 th percentile)				6.4	17.6		5.8	19.6		3.4	13.6		4.8	25.5		
Queue Storage Ratio ($R Q$) (95 th percentile)				0.85	0.00		0.75	0.00		0.62	0.00		1.03	0.00		
Uniform Delay (d_{1}), s/veh				33.3	41.8		33.9	45.1		31.3	33.3		24.6	38.7		
Incremental Delay (d_{2}), s/veh				1.0	1.0		1.5	1.7		0.7	0.5		0.2	1.8		
Initial Queue Delay ($d_{\text {s }}$), s/veh				0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0		
Control Delay (d), s/veh				34.3	42.8		35.4	46.8		32.1	33.8		24.8	40.5		
Level of Service (LOS)				C	D		D	D		C	C		C	D		
Approach Delay, s/veh / LOS				40.4		D	44.0		D	33.4		C	37.6		D	
Intersection Delay, s/veh / LOS				39.1												
Multimodal Results				EB			WB			NB			SB			
Pedestrian LOS Score / LOS																
Bicycle LOS Score / LOS																

Appendix K

No-Build Capacity Analysis Worksheets - 2044 w/ Improvements

Appendix L

Build Capacity Analysis Worksheets - 2044 w/ Improvements

Appendix M

Access Capacity Analysis Worksheets - 2024

General Information

Analyst	ABC
Agency/Co.	TMS Engineers, Inc.
Date Performed	$8 / 9 / 2022$
Analysis Year	2024
Time Analyzed	AM Peak
Intersection Orientation	East-West
Project Description	Build Conditions

Site Information

Intersection	SR 752 \& Access
Jurisdiction	Ashville, OH
East/West Street	SR 752
North/South Street	Proposed Access
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			353	62		10	198			46		20				
Percent Heavy Vehicles (\%)						3				23		23				
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.13				6.63		6.43				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.23				3.71		3.51				

Delay, Queue Length, and Level of Service

General Information

Analyst	ABC	
Agency/Co.	TMS Engineers, Inc.	
Date Performed	$8 / 9 / 2022$	
Analysis Year	2024	
Time Analyzed	PM Peak	Ar
Intersection Orientation	East-West	Build Conditions
Project Description		

Site Information

Intersection	SR 752 \& Access
Jurisdiction	Ashville, OH
East/West Street	SR 752
North/South Street	Proposed Access
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			315	62		17	274			27		16				
Percent Heavy Vehicles (\%)						3				23		23				
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.13				6.63		6.43				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.23				3.71		3.51				

Delay, Queue Length, and Level of Service

Appendix N

Access Capacity Analysis Worksheets - 2044

General Information

Analyst	ABC
Agency/Co.	TMS Engineers, Inc.
Date Performed	$8 / 9 / 2022$
Analysis Year	2044
Time Analyzed	AM Peak
Intersection Orientation	East-West
Project Description	Build Conditions

Site Information

Intersection	SR 752 \& Access
Jurisdiction	Ashville, OH
East/West Street	SR 752
North/South Street	Proposed Access
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			403	62		10	258			46		20				
Percent Heavy Vehicles (\%)						3				23		23				
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.13				6.63		6.43				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.23				3.71		3.51				

Delay, Queue Length, and Level of Service

General Information

Analyst	ABC
Agency/Co.	TMS Engineers, Inc.
Date Performed	$8 / 9 / 2022$
Analysis Year	2044
Time Analyzed	PM Peak
Intersection Orientation	East-West
Project Description	Build Conditions

Site Information

Intersection	SR 752 \& Access
Jurisdiction	Ashville, OH
East/West Street	SR 752
North/South Street	Proposed Access
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			365	62		17	364			27		16				
Percent Heavy Vehicles (\%)						3				23		23				
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.13				6.63		6.43				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.23				3.71		3.51				

Delay, Queue Length, and Level of Service

Appendix 0
 ODOT Turn Lane Warrant Graphs

Notes:

1. Analyst to fill in all blue areas.
2. Green areas are calculated for the analyst

2-LANE LEFT TURN LANE WARRANT (HIGHSPEED)

401-5bM

2-LANE RIGHT TURN LANE WARRANT (HIGH SPEED)

401-6bM

 EASTBOUND

AUXILLIARY TURN LANE WARRANTS PROJECT INFORMATION								
1. Client	POGGEMEYER DESIGN GROUP							
2. Job Number	22-029							
3. Jurisdiction	Ashville, OH							
4. Name of roadway where turn lanes are to be analyzed	SR 752 @ PROPOSED ACCESS							
5. Roadway speed limit	55							
6. Number of Lanes	2							
7. Analysis Condition (Year / Build)	2044 BUILD							
8. Direction of Roadway	EB/WB							
9. Direction of Side Street Approach	NB							
10. Is the Roadway Divided or Undivided	Undivided							
11. Enter Volume Data for Intersection	EASTBOUND							
- Right Turn				Advancing				
	Right	Thru						
AM	62	403	465					
	$62 \quad 365$							
- Left Turn $\begin{array}{lr} \\ & \text { AM } \\ \text { PM }\end{array}$	WESTBOUND		EAStBound					
	Left	Thru	Thru	Right	Advancing	Opposing	LT\%	
	10	258	403	62	268	465	3.7\%	
	17	364	365	62	381	427	4.5\%	

Notes:

1. Analyst to fill in all blue areas.
2. Green areas are calculated for the analyst

2-LANE LEFT TURN LANE WARRANT (HIGHSPEED)

401-5bM

2-LANE RIGHT TURN LANE WARRANT (HIGH SPEED)

401-6bM

 EASTBOUND

[^0]: File Name : Ashville Rd \& S. Walnut St 030122 Site Code : 00000000 Start Date : $3 / 1 / 2022$
 Page No $: 1$

[^1]: Westerville, OH, 2 May 2022
 DHL Real Estate Development- Excellence. Simply delivered.

[^2]: * Enter \& Exit splits are based on directional distribution for ITE Land Use 156 - High-Cube Parcel Hub Warehouse
 ** Truck splits not available for Land Use \#156. Enter \& Exit splits are based on AVERAGE directional distribution for ITE Land Uses 150/154/155
 ** Truck splits not available for Land Use \#156. Enter \& Exit splits are based on AVERAGE directional distribution for ITE Land Uses 150/154/155

