

Preliminary Stormwater Design Report

The Distillery

State Route 752, Village of Ashville, Ohio November 23, 2022

Prepared by:

Craig E. Stevenson PE, PS Harral and Stevenson Civil Engineering and Surveying

Executive Summary

The proposed project consists of the development of ten 3-story apartment buildings with a total of 232 units (76 - 1 bedroom, 132 – 2 bedroom, and 24 - 3 bedroom units and a clubhouse) on a 21.416 acre parcel of land that is currently row crop agricultural land. Construction activities will include construction of said apartment buildings, clubhouse, parking lot, trash collection facilities, a retention pond and associated utilities.

Existing Site

Pre-Developed area "A" consists of 12.76 acres of row crop agricultural use that drains from the east side of the property to the northwest corner of the property where runoff enters an existing swale on the CSXT Railroad property and combines with an Offsite Tributary that consists of 1.80 acres (Labeled as Offsite Tributary to EX CB on the predeveloped tributary map) and enters a catch basin within the Right-of Way on the south side of State Route 752. This area in general and the underpass in particular are known to be an extreme flooding issue with no immediately feasible means of remedy. It is our understanding that during the Development Plan approval process, it was stipulated by the Village and agreed to by the owner, that the stormwater design would need to provide a more robust solution than is typically required by the Village.

Based on field observations the capacity of the existing catch basin grate and 10" outlet pipe are as follows: with the open area of the catch basin grate being 2.4 Sq. Ft. and the maximum depth of ponding to the existing edge of pavement being <2" the capacity of this grate is 1.75 CFS, furthermore the existing 10" storm sewer has a capacity of 3.424 CFS at 2.07% slope.

Pre-Developed area B flows to the south and Pre-Developed Areas C and D flow to the East then south along an existing gravel drive that leads to the Wastewater Treatment Plant.

The existing soils on the site are class C hydrologic group. Additionally, 96.8% of the soils are Crosby Silt Loam (CrA) with a small portion of the site near the southwest corner being Kokomo Silty Clay Loam and Miamian-Kendallville Silt Loam. All curve numbers were assigned using the class C hydrologic soil group.

Quantity Control Design Approach

The proposed grading scheme is designed to direct the Stormwater to the proposed retention pond located at the Northwest corner of the site. This area is labeled as Post-Developed A on the Post-Developed tributary map. Post-Developed B is a direct discharge of a fringe area that is unable to be detained in the retention pond.

Based on the discussion above, our design proposes to replace the existing catch basin with an ODOT CB No 5 catch basin and connect it directly to the existing 24" storm sewer. With the open area in the grate being 5.72 Sq. Ft. and a ponding depth of just over 7 inches without ponding into the roadway, the new catch basin will have a capacity of 14.5 CFS. See mass grading plan sheet 5 for details of this catch basin. An inlet report for the proposed catch basin can be found on the following pages.

The design will capture the runoff from the Post-Developed A 100 year storm and release it at a rate that when combined with Post-Developed B and the Offsite Tributary to the existing catch basin is less than the 14.5 CFS capacity of the proposed catch basin mentioned above. This overdesign will result in some mitigation to the historic flooding problem at the underpass.

Based on this approach we have not included any Critical Storm calculations since it is no longer applicable to this project. The outlet structure is designed to restrict the rate of runoff from the improved

area such that the total release rate from the site in each Post-Developed event up to and including the 100 Year Storm, would be less than the peak rate from the 1 year Pre-Developed storm. The outlet control structure will consist of a 4'x4' concrete catch basin with a 24" sump (705.00) to collect sediment and a 6" orifice (706.00) in the side of the outlet control structure to control the Water Quality Volume Details can be found on Sheet 5 of the Mass Grading Plans. The top of the catch basin (708.25) will be the second and final stage of the outlet control structure which will not receive flows unless the 6" orifice is clogged or if there is a storm event greater than the 100-year storm.

Post-Developed area C is the direct discharge from the fringe area that will be released to the south. Per the calculations and the summary table below The direct runoff from the 100-year storm event of Post-Developed area C is less than the runoff of the 1-year storm event of Pre-Developed areas B, C and D Combined.

	Predeveloped A (Hydro #1)	Offsite Tributary to Proposed CB 34 (Hydro #10)	Allowable Release to Proposed CB 34	Postdeveloped A Routed (Hydro #9)	Ponding Elevation	Storage Volume	Direct Release From Postdeveloped B (Hydro #7)	Actual Release Rate and Offsite Tributary to Proposed CB 34 (Hydro #11)
Year	CFS	CFS	CFS	CFS	Feet	C.F.	CFS	CFS
1	12.570	1.762	14.500	0.447	706.55	46676	0.300	2.128
2	17.280	2.505	14.500	0.553	706.73	64018	0.501	3.181
5	24.090	3.698	14.500	0.703	706.99	90694	0.823	4.810
10	29.800	4.746	14.500	0.813	707.22	113920	1.111	6.223
25	38.260	6.265	14.500	0.956	707.56	147718	1.543	8.221
50	45.150	7.553	14.500	1.064	707.85	176629	1.922	9.924
100	52.520	8.925	14.500	1.622	708.10	202026	2.333	11.730

Discharge Summary to Existing CB

Direct Discharge Summary to South

	Predeveloped B, C, D Combined (Hydro #5)	Allowable Release	Postdeveloped C (Hydro #8)
Year	CFS	CFS	CFS
1	7.828	7.828	1.076
2	10.760	7.828	1.679
5	15.140	7.828	2.626
10	18.840	7.828	3.459
25	24.120	7.828	4.704
50	28.550	7.828	5.783
100	33.240	7.828	6.944

Water Quality

The project will disturb well over 1 acre warranting coverage under the statewide general permit for construction stormwater. In accordance with permit, the design proposes a wet extended detention basin as the post construction BMP. The WQv will be detained by the 6" orifice in the outlet structure. The WQv design was developed using the OEPA Compliance Worksheet which is included on the follow pages.

Storm Sewer

The internal storm sewer is designed using a 2 year flow and 5 year hydraulic grade line check. As previously discussed, the vast majority of the site is graded to be tributary to one of the catch basins or other inlets. The storm sewer network is directed to discharge to one of two forebays within retention pond through one of three headwalls with rock channel protection to dissipate flow and reduce erosion. The storm sewer design calculations are shown on the computation sheet which is included herein.

Temporary Sediment Basin

The proposed retention pond will be used as a temporary sediment basin during the construction phase of this project. The sediment basin was developed using the OEPA Sediment Basin Sizing and Dewatering Compliance Tool which is included on the following pages. Per the OEPA Sediment Basin Sizing and Dewatering Compliance Tool, below is a screenshot of the Faircloth Skimmer sizing results.

PM		Skimmer Sizing – Faircioth Skir	nmer
Holiday I	Hours: We are closed for Thanksg	jiving November 24-25, Christmas Dec 23-2	27, and New Years Jan 1–2. Got it!
🖃 Post Office Box 789, Hillsborou	gh, North Carolína 27278 🛛 📞 Phone: 919-732-1	244 🖃 Post Office Box 789, Hillsborough, North Carolina 27278	
Faircloth Skimmer	8		contact us (919) 732-1244
合 HOME	😂 TECHNICAL INFO	KIMMER SIZING	nder skimmer 📄 Contact
SKIMMER SIZI	NG		Home / Skimmer Sizing
	JLATORS		Determining the Skimmer Size and the Required Orlice for the Faircoth Skimmer® Surface Drain (click here to open document)
	JLATORS RCLOTH SKIMMER® SIZE	Days to Drain	TECHNICAL SIZING INSTRUCTIONS Determining the Skimmer Size and the Required Orifice for the Faircloth Skimmer® Surface Drain (click here to open document)
CALCULATE FAIL CALCULATE FAIL Required Bas 32858 The required basin volume is the provided or total volume is the provided or total volume is the maintained between storm a sediment basin may be larg permanent stormwater pond.	SILATORS RCLOTH SKIMMER® SIZE	Days to Drain 2 Number of Days to drain is usually determined by local or state regulations. Where there is no requirement 3 days is recommended. Keep in mind the quicker the basin is to drain the larger the skimmer required. In NC, assume 3 days to drain.	 Etechnical Sizing Instructions Determining the Skimmer Size and the Required Orifice for the Faircoth Skimmer® Surface Drain (click here to open document) DETERMINING SKIMMER SIZE Eight sizes available, ranging from 1½° for small sediment traps to 8° for very large basins. Size refers to the maximum diameter of the inlet. For example, a 4° faircloth Skimmer@ has a 4° maximum orifice size. Each Faircloth Skimmer@ includes
CONLINE CALCU CONLINE CALCULATE FAIL CALCULATE FAIL CALCULA	JLATORS RCLOTH SKIMMER® SIZE sin volume in cubic feet the scual volume you intend to drain, nct which is often inarger. If a pool of water is to ns, do not indude that volume. In some cases er than required because it will be used as a	Days to Drain 2 Number of Days to drain is usually determined by local or state regulations. Where there is no requirement 3 days is recommended. Keep in mind the quicker the basin is to drain the larger the skimmer required. In NC, assume 3 days to drain. ORIFICE DIAMETER	 TECHNICAL SIZING INSTRUCTIONS Determining the Skimmer Size and the Required Orifice for the Faircloth Skimmer® Surface Drain (click here to open document) DETERMINING SKIMMER SIZE Eight sizes available, ranging from 1½" for small sediment traps to 8" for very large basins. Size refers to the maximum diameter of the inlet. For example, a 4" Faircloth Skimmer@ has a 4" maximum orifice size. Each Faircloth Skimmer@ includes a plug and adjustable cutter for making an orifice (hole) smaller than the inlet to customize the flow
CONLINE CALCU CONLINE CALCULATE FAIL CALCULATE FAIL Required Basin volume vis the provided or total volume vis the provided or total volume vis the maintained between storm a seminent basin may be large permanent stormwater pond. SKIMMER SIZ 4.0 Inches	SILATORS CLOTH SKIMMER® SIZE Sin volume in cubic feet the scual volume you intend to drain, not which is often larger. If a pool of water is to rs, do not include that volume. In some cases than required because it will be used as a CL	Days to Drain 2 Number of Days to drain is usually determined by local or state regulations. Where there is no requirement 3 days is recommended. Keep in mind the quicker the basin is to drain the larger the skimmer required. In NC, assume 3 days to drain. NC, assume 3 days to drain. ORIFICE DIAMETER 3.6 inches	 Etchnical Sizing Instructions Determining the Skimmer Size and the Required Orifice for the Faircoth Skimmer® Surface Drain (click here to open document) DETERMINING SKIMMER SIZE Eight sizes available, ranging from 1½° for small sediment traps to 8° for very large basins. Size refers to the maximum diameter of the inlet. For example, a 4° Faircloth Skimmer® has a 4° maximum orifice size. Each Faircloth Skimmer® includes a plug and adjustable cutter for making an orifice (hole) smaller than the inlet to customize the flow rate for the particular basin.
ONLINE CALCU CALCULATE FAIL Required Basin volume is the provided or total volume's the provided total volume's the maintained between storm a sediment basin may be large permanent stormwater pond. SKIMMER SIZ 4.0 inches	JLATORS RCLOTH SKIMMER® SIZE Isin volume in cubic feet a the actual volume you intend to drain, not which is often larger. If a pool of water is to ns, do not indude that volume. In some cases or than required because it will be used as a the organized because it will be used as a t	Days to Drain 2 Number of Days to drain is usually determined by local or state regulations. Where there is no requirement 3 days is recommended. Keep in mind the quicker the basin is to drain the larger the skimmer required. In NC, assume 3 days to drain. NC, assume 3 days to drain. ORIFICE DIAMETER 3.6 inches	 Etchnical Sizing Instructions Determining the Skimmer Size and the Required Orlice for the Faircoth Skimmer® Surface Drain (dick here to open document) DETERMINING SKIMMER SIZE Eight sizes available, ranging from 1½" for small sediment traps to 8" for very large basins. Size refers to the maximum diameter of the inlet. For example, a 4" Faircloth Skimmer@ has a 4" maximum orlice size. Each Faircloth Skimmer@ includes a plug and adjustable cutter for making an orlice (hole) smaller than the inlet to customize the flow rate for the particular basin. METHOD USED

	Harral and Stevenson Civil Engineering and Surveying				STORM SEWER COMPUTATION SHEET																
	www.harra	alstevens	on.com					Project:	The Dis	tiller	y, Ashv	ille, Ohio				Date: 11/	21/2022				
		2	Year Desid	un Storm	N=	0 012		JOD NO.	: E2210/ v Referei	/3 nce: (Columb	us				By: DLS Checked	· CES			Revised	۱ .
		_	Drai	nage Al	rea	Time							Cap.			Oneoned	. 020	5 YEA	R HYDRAUL	IC GRA	
Structure	Station	Trib	Cumul	C C		Sum t	Intensit	Des Q (CES)	Length (ft)	Dia. (in)	Slope	Velocity	Flowin	Out	In	T.C.	Cover (ft)	5 Yr.	Discharge	Slope	5 Vr HGI
			ouniui.			(min.)	y (,	(010)	(10.)	(,	(70)	(10.000.)	g Full				(10.)	Rainfall	Q (CFS)	(%)	5 H. HOE
8	1085	0.750	0.750	0.80	0.600	10.00	3.81	2.286	140.00	12	0.45	3.31	2.596	711.20	740 57	714.30	2.10	4.63	2.778	0.61	712.00
1	945	0.470	1.220	0.80	0.976	10.71	3.70	3.611	140.00	15	0.40	3.62	4.438	710.32	/10.5/	714.30	2.73	4.52	4.412	0.46	711.32
5	605 665	0.400	2 150	0.00	1.344	12.01	3.70	4.973	140.00	10	0.30	3.04	6.250	709.51	709.70	713.30	2.29	4.52	0.075	0.33	710.71
4	525	0.470	2.130	0.80	2 080	12.01	3.48	7 238	168.00	24	0.30	3.54	10 990	708.99	709.09	713.30	3.23	4.4	8 944	0.52	710.39
3	357	0.530	4.690	0.85	3.833	13.47	3.48	13.339	168.00	30	0.15	3.52	17.256	707.24	707.74	713.30	3.56	4.3	16.482	0.16	709.24
2	189	0.400	7.050	0.85	5.794	14.27	3.34	19.352	189.36	36	0.15	3.97	28.060	706.48	706.98	713.30	3.82	4.19	24.277	0.13	708.88
1	0														706.20						707.00
12	560	0.410	0.410	0.80	0.328	10.00	3.81	1.250	140.00	12	0.45	3.31	2.596	710.82		713.80	1.98	4.63	1.519	0.18	711.62
11	420	0.530	0.940	0.85	0.779	10.71	3.70	2.880	140.00	15	0.40	3.62	4.438	709.94	710.19	713.30	2.11	4.52	3.519	0.30	710.94
10	280	0.490	1.430	0.80	1.171	11.35	3.70	4.331	140.00	15	0.40	3.62	4.438	709.28	709.38	713.30	2.77	4.52	5.291	0.67	710.61
9	140	0.530	1.960	0.85	1.621	12.00	3.58	5.803	139.64	18	0.35	3.82	6.750	708.47	708.72	713.30	3.33	4.4	7.132	0.46	709.67
2	0														707.98						708.88
47	004	0.000	0.000	0.00	0.010	10.00	2.04	0.000	404.04	0	0.70	0.45	4 000	740.04		740.00	0.50	4.00	0.000	0.00	740 50
17	550	0.020	0.020	0.90	0.018	10.00	3.81	0.069	101.24	8 10	0.70	3.15	1.098	712.04	711 22	713.30	0.59	4.63	0.083	0.00	712.58
10	559 410	0.720	0.720	0.00	0.376	11.04	3.70	2.131	140.00	12	0.45	3.01	2.390	710.12	710.37	714.30	2.30	4.52	2.004	0.55	711.00
14	279	0.320	1 0.340	0.80	0.400	11.24	3.58	3 050	140.00	18	0.40	3.82	6 7 50	709.31	709.56	714.30	3.49	4.52	3 749	0.10	710.51
13	139	0.530	1.560	0.85	1.303	12.50	3.58	4.663	139.28	18	0.35	3.82	6.750	708.72	708.82	713.30	3.08	4.4	5.731	0.30	709.92
3	0	0.000		0.00			0.00				0.00	0.02			708.24		0.00			0.00	709.24
22	552	0.470	0.470	0.80	0.376	10.00	3.81	1.433	154.00	12	0.45	3.31	2.596	709.02		713.30	3.28	4.63	1.741	0.24	709.82
21	398	0.330	0.800	0.80	0.640	10.78	3.70	2.368	168.00	12	0.45	3.31	2.596	708.23	708.33	713.30	4.07	4.52	2.893	0.66	709.03
20	230	0.390	1.440	0.85	1.172	11.62	3.58	4.194	168.00	15	0.40	3.62	4.438	707.22	707.47	713.30	4.83	4.4	5.155	0.63	708.51
19	62	0.250	1.450	0.85	1.173	11.62	3.58	4.198	62.04	15	0.40	3.62	4.438	706.45	706.55	713.30	5.60	4.4	5.159	0.64	707.45
18	0														706.20						707.00
	154	0.400	0.400	0.00	0.220	10.00	2.04	4 240	154.00	10	0.45	2.24	2 500	707.20		740.00	4.04	4.62	4 492	0.17	700.40
10	154	0.400	0.400	0.80	0.320	10.00	3.81	1.219	154.00	12	0.45	3.31	2.596	101.39	706 70	713.30	4.91	4.03	1.462	0.17	708.19
13	0									-					100.10						101.40
24	154	0.580	0.580	0.80	0.464	10.00	3.81	1.768	154.00	12	0.45	3.31	2.596	708.16		713.30	4.14	4.63	2.148	0.36	709.07
20	0														707.47		-		1		708.51
						1															
30	608	0.320	0.320	0.70	0.224	10.00	3.81	0.853	62.00	12	0.45	3.31	2.596	709.80		N/A	N/A	4.63	1.037	0.08	710.60
29	546	0.180	0.500	0.85	0.377	10.31	3.81	1.436	99.32	12	0.45	3.31	2.596	709.42	709.52	712.60	2.18	4.63	1.746	0.24	710.22
28	446	0.340	0.840	0.85	0.666	10.81	3.70	2.464	120.00	12	0.45	3.31	2.596	708.87	708.97	712.30	2.43	4.52	3.010	0.71	709.67
27	326	0.380	1.220	0.82	0.978	11.42	3.70	3.617	185.00	15	0.35	3.38	4.151	708.08	708.33	712.30	2.97	4.52	4.419	0.47	709.08
26	141	0.000	1.770	0.82	1.317	11.42	3.70	4.873	141.24	18	0.25	3.23	5.705	706.55	707.43	711.75	3.70	4.52	5.953	0.32	707.75
25	U														706.20						101.00
21	1/7	0.020	0.020	0.70	0.651	10.00	2 0 1	2 400	1/6 79	15	0.25	3.20	1 1 5 1	707 22		711.05	2 60	162	2 014	0.22	709 22
26	0	0.930	0.930	0.70	0.001	10.00	5.01	2.400	140.70	10	0.50	5.30	4.131	101.32	706.80	111.20	2.00	4.03	5.014	0.22	707.75
20	0														100.00						101.10
	1				1	1	1	1	1	1	1	1		1					I		

Wat Extanded Datantian	Pasin WOV Co	maliano				
wet Extended Detention E		mphane	.e 1001	v	ersion 3.1 2018-10-25	
Project Summary						
Project Name:	The Distillery					
Subwatershed ID/Label:	Post-Develop	ed A				
Submitted by:	Craig Stevens	on, P.E., P	.S.			
Date:	Date: 9/14/2022					
					.	
Subwatershed Drainage Area, A _{total} =	17.27	acres	=	752,281	ft2	
Subwatershed Impervious Area, A _{imp} =	9.10	acres	=	396,396	ft2	
Imperviousness fraction, i =	0.53			53	%	
Water Quality Volume, WQv =	29,578	ft³	=	0.68	ac-ft	
		•			•	
Step 1 - Soil Suitability						
			_			
Soil Series	Crosby Sil	t Loam		HSG	D	
Stop 2 Wat ED Rasin Valuma Paguiraments						
Step 2 - Wet ED Basin Volume Requirements	I					
Extended Detextion Volume - EDu-	20570	د، 3				

Extended Detention Volume, EDv =	29578	ft ³
Minimum Sediment Storage Volume, V _{sediment} =	5916	ft³
Minimum Permanent Pool Volume, PPv =	35493	ft³

Step 3 - Basin Stage-Storage Relationship				
			Incremental	Cumulative
	Elevation	Area	Volume	Volume
	ft	ft ²	ft ³	ft³
Bottom of Permanent Micropool =	700.00	17904		
	706.00	50193	196,149	196,149
	706.20	60567	11,060	207,209
	709.85	146680	366,827	574,036

Step 5 - Outlet (Orifice) Sizing

Sediment Basin Sizing and	Dewatering Compliance Tool		
		version 1.2 2022-08-30	
Project Summary			
Project Name:	The Distillery		
Project Location:	State Route 752 Ashville, Ohio		Street address (or street name and nearest intersection), City, state, zip code
Subwatershed ID/Label:	Post-Developed A		
Project Latitude:			Enter latitude at entrance to site in decimal degrees (format: 40.947544)
Project Longitude:			Enter longitude at entrance to site in decimal degrees (format: -81.465240)
NPDES Permit Applicant:	4gc08729*ag		
Submitted by:	Craig Stevenson		Name of design engineer
Date:	11/23/2022		mm/dd/yyyy
Watershed:	Statewide 🗸		Select from dropdown which watershed the project is located in, select "Statewide" if not in the Big Darby Creek Watershed
Subwatershed Total Drainage Area, A _{total} =	17.27 acres = 752,281	ft ² ft ²	Report to the nearest 0.01 acre; include any drainage from off-site
	1/12/ 00/03 - /32/201	1	ب All Basin dewatering discharge calculations in these worksheets assume free discharge from the outlet (i.e., no tailwater)

Requirement: Minimum Sediment Volume = 1000 ft3/acre of disturbed drainage area Requirement: Minimum Dewatering Volume = 1800 ft3/acre of total drainage area

itep 2 - Basin Stage-Storage Relationship				
			Incremental	Cumulative
	Elevation	Area	Volume	Volume
	ft	ft ²	ft ³	ft ³
Bottom of Sediment Storage (Pond) =	700.00	13,287		
	704.00	20,520	67,092	67,092
	706.00	34,600	54,510	121,603
IMPORTANT: Must include the exact Skimmer	706.80	47,545	32,721	154,324
Outlet/Skimmer Stop Elevation and the Secondary	708.10	95,436	91,148	245,472
Outlet Invert Elevation in the Stage-Storage Table	709.85	144,997	208,873	454,345

Note: The basin dewatering discharge calculation in this worksheet assumes a free discharge from the outlet (i.e., no tailwater). The skimmer outlet elevation may need to be adjusted upward to account for tailwater as appropriate. Tailwater is common to low gradient ditches or water bodies with prolonged increases in water level

Example Faircloth Float Spec Sheet

Please note the drawing and image shown below are provided solely to assist with identification of the skimmer type and its associated componants. The drawing and photo below does not necessarily depict an installation that complies with the General Permit or Rainwater & Land Development specification, especially where the sediment storage zone in omitted.

Inlet Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Proposed Catch Basin 34

Drop	Grate	Inlet
------	-------	-------

Location	= Sag
Curb Length (ft)	= -0-
Throat Height (in)	= -0-
Grate Area (sqft)	= 5.72
Grate Width (ft)	= 2.67
Grate Length (ft)	= 2.67

Gutter

Slope, Sw (ft/ft)	=	0.290
Slope, Sx (ft/ft)	=	0.290
Local Depr (in)	=	-0-
Gutter Width (ft)	=	4.00
Gutter Slope (%)	=	-0-
Gutter n-value	=	-0-

Calculations Compute by: Max Depth (in)	Q vs Depth = 7
Highlighted	
Q Total (cfs)	= 14.50
Q Capt (cfs)	= 14.50
Q Bypass (cfs)	= -0-
Depth at Inlet (in)	= 7.07
Efficiency (%)	= 100
Gutter Spread (ft)	= 8.06
Gutter Vel (ft/s)	= -0-
Bypass Spread (ft)	= -0-
Bypass Depth (in)	= -0-

All dimensions in feet

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI					
CrA	Crosby silt loam, Southern Ohio Till Plain, 0 to 2 percent slopes	C/D	20.7	96.8%					
Ко	Kokomo silty clay loam, 0 to 2 percent slopes	C/D	0.7	3.1%					
MkB	Miamian-Kendallville silt loams, 2 to 6 percent slopes	С	0.0	0.1%					
Totals for Area of Intere	est	21.4	100.0%						

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Hydraflow Table of Contents

Wednesday, 11 / 23 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Watershed Model Schematic	1
Hydrograph Return Period Recap	2

1 - Year

Summary Report	3
Hydrograph Reports	4
Hydrograph No. 1, SCS Runoff, Predeveloped A	4
TR-55 Tc Worksheet	5
Hydrograph No. 2, SCS Runoff, Predeveloped B	6
TR-55 Tc Worksheet	7
Hydrograph No. 3, SCS Runoff, Predeveloped C	8
TR-55 Tc Worksheet	9
Hydrograph No. 4, SCS Runoff, Predeveloped D	10
TR-55 Tc Worksheet	11
Hydrograph No. 5, Combine, Pre B C D Combined	12
Hydrograph No. 6, SCS Runoff, Postdeveloped A	13
TR-55 Tc Worksheet	14
Hydrograph No. 7, SCS Runoff, Postdeveloped B	15
TR-55 Tc Worksheet	16
Hydrograph No. 8, SCS Runoff, Postdeveloped C	17
Hydrograph No. 9, Reservoir, Postdeveloped A Routed	18
Pond Report - Proposed Retention Pond	19
Hydrograph No. 10, SCS Runoff, Offsite Tributary to PR CB 34	20
Hydrograph No. 11, Combine, Actual Release Rate Post A, Post B, Offsite Combin	21

2 - Year

Summary Report 22	2
Hydrograph Reports	3
Hydrograph No. 1, SCS Runoff, Predeveloped A 23	3
Hydrograph No. 2, SCS Runoff, Predeveloped B 24	4
Hydrograph No. 3, SCS Runoff, Predeveloped C 2	5
Hydrograph No. 4, SCS Runoff, Predeveloped D 20	6
Hydrograph No. 5, Combine, Pre B C D Combined 2	7
Hydrograph No. 6, SCS Runoff, Postdeveloped A 28	8
Hydrograph No. 7, SCS Runoff, Postdeveloped B 29	9
Hydrograph No. 8, SCS Runoff, Postdeveloped C	0
Hydrograph No. 9, Reservoir, Postdeveloped A Routed	1
Hydrograph No. 10, SCS Runoff, Offsite Tributary to PR CB 34	2
Hydrograph No. 11, Combine, Actual Release Rate Post A, Post B, Offsite Combin 33	3

5 - Year

Summary Report	. 34
Hydrograph Reports	. 35
Hydrograph No. 1, SCS Runoff, Predeveloped A	. 35
Hydrograph No. 2, SCS Runoff, Predeveloped B	. 36
Hydrograph No. 3, SCS Runoff, Predeveloped C	. 37
Hydrograph No. 4, SCS Runoff, Predeveloped D	. 38

	Hydrograph No. 5. Combing. Dro P.C.D. Combined	20
	Hydrograph No. 5, Combine, Fre B C D Combined	39
	Hydrograph No. 7, SCS Runoff, Postdeveloped A	40
	Hydrograph No. 7, SCS Runoff, Postdeveloped D	41
	Hydrograph No. 8, SCS Runoil, Posideveloped C	42
	Hydrograph No. 9, Reservoir, Posideveloped A Rouled	43
	Hydrograph No. 10, SCS Runoll, Olisile Thoulary to PR CB 34	44
	Hydrograph No. 11, Compline, Actual Release Rate Post A, Post B, Ofisite Complin	45
10	- Voar	
10	- Tear Summary Report	46
	Hydrogranh Reports	40
	Hydrograph No. 1. SCS Runoff Predeveloped A	47
	Hydrograph No. 2, SCS Runoff, Predeveloped R.	48
	Hydrograph No. 3, SCS Runoff, Predeveloped C.	<u>40</u>
	Hydrograph No. 4, SCS Runoff, Predeveloped D	50
	Hydrograph No. 5. Combine Pre B C D Combined	51
	Hydrograph No. 6, SCS Runoff, Postdeveloped A	52
	Hydrograph No. 7, SCS Runoff, Postdeveloped R	53
	Hydrograph No. 8, SCS Runoff, Postdeveloped C	54
	Hydrograph No. 9. Reservoir. Postdeveloped A Routed	55
	Hydrograph No. 10, SCS Runoff, Offsite Tributary to PR CB 34	56
	Hydrograph No. 11. Combine. Actual Release Rate Post A. Post B. Offsite Combin	57
		-
25	- Year	
	Summary Report	58
	Hydrograph Reports	59
	Hydrograph No. 1, SCS Runoff, Predeveloped A	59
	Hydrograph No. 2, SCS Runoff, Predeveloped B	60
	Hydrograph No. 3, SCS Runoff, Predeveloped C	61
	Hydrograph No. 4, SCS Runoff, Predeveloped D	62
	Hydrograph No. 5, Combine, Pre B C D Combined	63
	Hydrograph No. 6, SCS Runoff, Postdeveloped A	64
	Hydrograph No. 7, SCS Runoff, Postdeveloped B	65
	Hydrograph No. 8, SCS Runoff, Postdeveloped C	66
	Hydrograph No. 9, Reservoir, Postdeveloped A Routed	67
	Hydrograph No. 10, SCS Runoff, Offsite Tributary to PR CB 34	68
	Hydrograph No. 11, Combine, Actual Release Rate Post A, Post B, Offsite Combin	69
E ^	Veer	
50	- Year	70
	Summary Report.	70
	Hydrograph Ne. 1, CCC Duroff, Dradavalanad A	/1 74
	Hydrograph No. 1, SCS Runoff, Predeveloped A	71
	Hydrograph No. 2, SCS Kunoff, Predeveloped B	12
	Hydrograph No. 3, SUS Kunoll, Predeveloped U	13
	Hydrograph No. 4, SUS KUNOII, Predeveloped D	14 75
	Hydrograph No. 5, Combine, Pre B C D Combined	15
	Hydrograph No. 0, SUS KUNOII, POStaeveloped A	/b 77
	Hydrograph No. 7, 505 Kunoll, Postdeveloped B	11
	Hydrograph No. 8, SUS Kunoff, Postdeveloped C	. 78
	Hydrograph No. 9, Reservoir, Postdeveloped A Routed	79

Hydrograph No. 10, SCS Runoff, Offsite Tributary to PR CB 34	. 80
Hydrograph No. 11, Combine, Actual Release Rate Post A, Post B, Offsite Combin	81

100 - Year

Summary Report	82
Hydrograph Reports	83
Hydrograph No. 1, SCS Runoff, Predeveloped A	83
Hydrograph No. 2, SCS Runoff, Predeveloped B	84
Hydrograph No. 3, SCS Runoff, Predeveloped C	85
Hydrograph No. 4, SCS Runoff, Predeveloped D	86
Hydrograph No. 5, Combine, Pre B C D Combined	87
Hydrograph No. 6, SCS Runoff, Postdeveloped A	88
Hydrograph No. 7, SCS Runoff, Postdeveloped B	89
Hydrograph No. 8, SCS Runoff, Postdeveloped C	. 90
Hydrograph No. 9, Reservoir, Postdeveloped A Routed	91
Hydrograph No. 10, SCS Runoff, Offsite Tributary to PR CB 34	. 92
Hydrograph No. 11, Combine, Actual Release Rate Post A, Post B, Offsite Combin	93
IDF Report	94

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd.	Hydrograph	Inflow	Peak Outflow (cfs)							Hydrograph	
(o	type (origin)	nya(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff		12.30	16.72		23.24	28.71	36.47	42.95	49.77	Predeveloped A
2	SCS Runoff		4.329	5.739		7.791	9.494	11.89	13.88	15.97	Predeveloped B
3	SCS Runoff		3.076	4.277		6.071	7.591	9.760	11.58	13.50	Predeveloped C
4	SCS Runoff		0.446	0.769		1.292	1.761	2.467	3.091	3.768	Predeveloped D
5	Combine	2, 3, 4	7.828	10.76		15.14	18.84	24.12	28.55	33.24	Pre B C D Combined
6	SCS Runoff		22.69	30.71		42.51	52.38	66.36	78.00	90.26	Postdeveloped A
7	SCS Runoff		0.300	0.501		0.823	1.111	1.543	1.922	2.333	Postdeveloped B
8	SCS Runoff		1.076	1.679		2.626	3.459	4.704	5.783	6.944	Postdeveloped C
9	Reservoir	6	0.447	0.553		0.703	0.813	0.956	1.064	1.622	Postdeveloped A Routed
10	SCS Runoff		1.726	2.505		3.698	4.746	6.265	7.553	8.925	Offsite Tributary to PR CB 34
11	Combine	7, 9, 10	2.128	3.181		4.810	6.223	8.221	9.924	11.73	Actual Release Rate Post A, Post B,

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description	
1	SCS Runoff	12.30	2	728	45,740				Predeveloped A	
2	SCS Runoff	4.329	2	724	13,561				Predeveloped B	
3	SCS Runoff	3.076	2	724	9,838				Predeveloped C	
4	SCS Runoff	0.446	2	726	1,756				Predeveloped D	
5	Combine	7.828	2	724	25,155	2, 3, 4			Pre B C D Combined	
6	SCS Runoff	22.69	2	722	63,980				Postdeveloped A	
7	SCS Runoff	0.300	2	726	1,137				Postdeveloped B	
8	SCS Runoff	1.076	2	722	3,059				Postdeveloped C	
9	Reservoir	0.447	2	1164	57,903	6	706.55	46,676	Postdeveloped A Routed	
10	SCS Runoff	1.726	2	722	4,637				Offsite Tributary to PR CB 34	
11	Combine	2.128	2	722	63,676	7, 9, 10			Actual Release Rate Post A, Post B,	
								Wednesday, 11 / 23 / 2022		
E22	21073 Hydro.g) pw			Return P	eriod: 1 Ye	ar	Wednesday	v, 11 / 23 / 2022	

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Predeveloped A

Hydrograph type =	SCS Runoff	Peak discharge	= 12.30 cfs
Storm frequency =	= 1 yrs	Time to peak	= 12.13 hrs
Time interval =	2 min	Hyd. volume	= 45,740 cuft
Drainage area =	= 12.760 ac	Curve number	= 86*
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	- TR55	Time of conc. (Tc)	= 25.70 min
Total precip. =	= 2.20 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(11.160 x 88) + (0.320 x 74) + (1.280 x 73)] / 12.760

Wednesday, 11 / 23 / 2022

Hyd. No. 1

Predeveloped A

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.170 = 100.0 = 2.62 = 0.75		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00	_	47 70
Traver Time (min)	- 17.72	т	0.00	т	0.00	-	17.72
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 866.00 = 1.25 = Unpaved =1.80	ł	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 8.00	+	0.00	+	0.00	=	8.00
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							25.70 min

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

Predeveloped B

Hydrograph type =	SCS Runoff	Peak discharge	= 4.329 cfs
Storm frequency =	≑ 1 yrs	Time to peak	= 12.07 hrs
Time interval =	2 min	Hyd. volume	= 13,561 cuft
Drainage area =	÷ 3.310 ac	Curve number	= 88
Basin Slope =	0.0 %	Hydraulic length	= 0 ft
Tc method =	TR55	Time of conc. (Tc)	= 19.30 min
Total precip. =	2.20 in	Distribution	= Type II
Storm duration =	24 hrs	Shape factor	= 484

Hyd. No. 2

Predeveloped B

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.170 = 100.0 = 2.62 = 1.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 15.79	+	0.00	+	0.00	=	15.79
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 366.00 = 1.16 = Unpavec =1.74	1	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 3.51	+	0.00	+	0.00	=	3.51
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							19.30 min

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Predeveloped C

Tryulograph type – 303 Kunon – 6	0.070 013
Storm frequency = 1 yrs Time to peak = 1	12.07 hrs
Time interval = 2 min Hyd. volume = 9	9,838 cuft
Drainage area = 3.050 ac Curve number = 8	84*
Basin Slope = 0.0% Hydraulic length = 0.0%	0 ft
Tc method = TR55 Time of conc. (Tc) = 1	17.50 min
Total precip. = 2.20 in Distribution = 1	Type II
Storm duration= 24 hrsShape factor= 4	484

* Composite (Area/CN) = [(2.260 x 88) + (0.400 x 73) + (0.390 x 74)] / 3.050

8

Hyd. No. 3

Predeveloped C

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.170 = 100.0 = 2.62 = 1.30		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 14.22	+	0.00	+	0.00	=	14.22
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 313.00 = 0.98 = Unpaved =1.60		0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 3.27	+	0.00	+	0.00	=	3.27
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							17.50 min

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

Predeveloped D

Hydrograph type	= SCS Runoff	Peak discharge	= 0.446 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 1,756 cuft
Drainage area	= 1.170 ac	Curve number	= 73*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 16.90 min
Total precip.	= 2.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.610 x 73) + (0.560 x 74)] / 1.170

10

Hyd. No. 4

Predeveloped D

<u>Description</u>	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.170 = 100.0 = 2.62 = 1.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 15.79	+	0.00	+	0.00	=	15.79
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 155.00 = 1.96 = Unpave =2.26	d	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 1.14	+	0.00	+	0.00	=	1.14
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							16.90 min

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

Pre B C D Combined

Hydrograph type Storm frequency	= Combine = 1 vrs	Peak discharge Time to peak	= 7.828 cfs = 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 25,155 cuft
Inflow hyds.	= 2, 3, 4	Contrib. drain. area	= 7.530 ac

Wednesday, 11 / 23 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

Postdeveloped A

Hydrograph type	= SCS Runoff	Peak discharge	= 22.69 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 63,980 cuft
Drainage area	= 18.020 ac	Curve number	= 86*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 15.00 min
Total precip.	= 2.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(9.100 x 98) + (8.920 x 74)] / 18.020

Hyd. No. 6

Postdeveloped A

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.150 = 32.0 = 2.62 = 1.97		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 4.38	+	0.00	+	0.00	=	4.38
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 178.00 = 1.40 = Paved =2.41		360.00 1.10 Unpave 1.69	d	0.00 0.00 Paved 0.00		
Travel Time (min)	= 1.23	+	3.55	+	0.00	=	4.78
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.79 = 2.21 = 0.25 = 0.012 =3.12		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})1085.0		0.0		0.0		
Travel Time (min)	= 5.80	+	0.00	+	0.00	=	5.80
Total Travel Time, Tc							15.00 min

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

Postdeveloped B

= SCS Runoff	Peak discharge	= 0.300 cfs
= 1 yrs	Time to peak	= 12.10 hrs
= 2 min	Hyd. volume	= 1,137 cuft
= 0.700 ac	Curve number	= 74
= 0.0 %	Hydraulic length	= 0 ft
= TR55	Time of conc. (Tc)	= 19.90 min
= 2.20 in	Distribution	= Type II
= 24 hrs	Shape factor	= 484
	 SCS Runoff 1 yrs 2 min 0.700 ac 0.0 % TR55 2.20 in 24 hrs 	= SCS RunoffPeak discharge= 1 yrsTime to peak= 2 minHyd. volume= 0.700 acCurve number= 0.0 %Hydraulic length= TR55Time of conc. (Tc)= 2.20 inDistribution= 24 hrsShape factor

Wednesday, 11 / 23 / 2022

Hyd. No. 7

Postdeveloped B

<u>Description</u>	<u>A</u>		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.400 = 50.0 = 2.63 = 1.09	<u>.</u>	0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		47.04
Travel Time (min)	= 17.34	+	0.00	+	0.00	=	17.34
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 256.00 = 1.09 = Unpaved =1.68	ł	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 2.53	+	0.00	+	0.00	=	2.53
Channel Flow							
X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015		
					0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							19.90 min
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

Postdeveloped C

Hydrograph type	= SCS Runoff	Peak discharge	= 1.076 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 3,059 cuft
Drainage area	= 1.570 ac	Curve number	= 76*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.110 x 98) + (1.460 x 74)] / 1.570

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Postdeveloped A Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.447 cfs
Storm frequency	= 1 yrs	Time to peak	= 19.40 hrs
Time interval	= 2 min	Hyd. volume	= 57,903 cuft
Inflow hyd. No.	= 6 - Postdeveloped A	Max. Elevation	= 706.55 ft
Reservoir name	= Proposed Retention Pond	Max. Storage	= 46,676 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 1 - Proposed Retention Pond

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 706.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	706.00	50,193	0	0
0.20	706.20	60,567	11,059	11,059
3.85	709.85	146,680	366,787	377,846

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 12.00	6.00	0.00	0.00	Crest Len (ft)	= 16.00	30.00	0.00	0.00
Span (in)	= 12.00	6.00	0.00	0.00	Crest El. (ft)	= 708.25	708.75	0.00	0.00
No. Barrels	= 1	1	1	0	Weir Coeff.	= 3.33	2.60	3.33	3.33
Invert El. (ft)	= 706.00	706.00	0.00	0.00	Weir Type	= Rect	Broad		
Length (ft)	= 60.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.42	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	Yes	No	TW Elev. (ft)	= 0.00	,		

Weir Structures

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Stage / Discharge Stage (ft) Elev (ft) 4.00 710.00 3.00 709.00 2.00 708.00 1.00 707.00 706.00 0.00 0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00 Discharge (cfs) Total Q

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Offsite Tributary to PR CB 34

Hydrograph type	= SCS Runoff	Peak discharge	= 1.726 cfs
Storm frequency	= 1 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 4,637 cuft
Drainage area	= 1.800 ac	Curve number	= 80*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.490 x 98) + (0.690 x 73) + (0.620 x 74)] / 1.800

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

Actual Release Rate Post A, Post B, Offsite Combin

Hydrograph type Storm frequency	= Combine = 1 yrs	Peak discharge Time to peak	= 2.128 cfs = 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 63,676 cuft
Inflow hyds.	= 7, 9, 10	Contrib. drain. area	= 2.500 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	16.72	2	728	61,573				Predeveloped A
2	SCS Runoff	5.739	2	724	17,943				Predeveloped B
3	SCS Runoff	4.277	2	724	13,482				Predeveloped C
4	SCS Runoff	0.769	2	726	2,715				Predeveloped D
5	Combine	10.76	2	724	34,141	2, 3, 4			Pre B C D Combined
6	SCS Runoff	30.71	2	722	86,127				Postdeveloped A
7	SCS Runoff	0.501	2	726	1,735				Postdeveloped B
8	SCS Runoff	1.679	2	722	4,552				Postdeveloped C
9	Reservoir	0.553	2	1174	78,890	6	706.73	64,018	Postdeveloped A Routed
10	SCS Runoff	2.505	2	722	6,603				Offsite Tributary to PR CB 34
11	Combine	3.181	2	722	87,227	7, 9, 10			Actual Release Rate Post A, Post B,
E22	21073 Hydro.g]pw			Return P	eriod: 2 Ye	ar	Wednesday	, 11 / 23 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Predeveloped A

SCS Runoff	Peak discharge	= 16.72 cfs
2 yrs	Time to peak	= 12.13 hrs
2 min	Hyd. volume	= 61,573 cuft
12.760 ac	Curve number	= 86*
0.0 %	Hydraulic length	= 0 ft
TR55	Time of conc. (Tc)	= 25.70 min
2.63 in	Distribution	= Type II
24 hrs	Shape factor	= 484
	SCS Runoff 2 yrs 2 min 12.760 ac 0.0 % TR55 2.63 in 24 hrs	SCS RunoffPeak discharge2 yrsTime to peak2 minHyd. volume12.760 acCurve number0.0 %Hydraulic lengthTR55Time of conc. (Tc)2.63 inDistribution24 hrsShape factor

* Composite (Area/CN) = [(11.160 x 88) + (0.320 x 74) + (1.280 x 73)] / 12.760

23

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

Predeveloped B

Hydrograph type	= SCS Runoff	Peak discharge	= 5.739 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 17,943 cuft
Drainage area	= 3.310 ac	Curve number	= 88
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.30 min
Total precip.	= 2.63 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Predeveloped C

Hydrograph type	= SCS Runoff	Peak discharge	= 4.277 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 13,482 cuft
Drainage area	= 3.050 ac	Curve number	= 84*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 17.50 min
Total precip.	= 2.63 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(2.260 x 88) + (0.400 x 73) + (0.390 x 74)] / 3.050

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

Predeveloped D

= SCS Runoff	Peak discharge	= 0.769 cfs
= 2 yrs	Time to peak	= 12.10 hrs
= 2 min	Hyd. volume	= 2,715 cuft
= 1.170 ac	Curve number	= 73*
= 0.0 %	Hydraulic length	= 0 ft
= TR55	Time of conc. (Tc)	= 16.90 min
= 2.63 in	Distribution	= Type II
= 24 hrs	Shape factor	= 484
	 SCS Runoff 2 yrs 2 min 1.170 ac 0.0 % TR55 2.63 in 24 hrs 	= SCS RunoffPeak discharge= 2 yrsTime to peak= 2 minHyd. volume= 1.170 acCurve number= 0.0 %Hydraulic length= TR55Time of conc. (Tc)= 2.63 inDistribution= 24 hrsShape factor

* Composite (Area/CN) = [(0.610 x 73) + (0.560 x 74)] / 1.170

Wednesday, 11 / 23 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

Pre B C D Combined

Hydrograph type	= Combine	Peak discharge	= 10.76 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 34,141 cuft
Inflow hyds.	= 2, 3, 4	Contrib. drain. area	= 7.530 ac

27

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

Postdeveloped A

Hydrograph type =	SCS Runoff	Peak discharge	= 30.71 cfs
Storm frequency =	= 2 yrs	Time to peak	= 12.03 hrs
Time interval =	= 2 min	Hyd. volume	= 86,127 cuft
Drainage area =	= 18.020 ac	Curve number	= 86*
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= TR55	Time of conc. (Tc)	= 15.00 min
Total precip. =	= 2.63 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(9.100 x 98) + (8.920 x 74)] / 18.020

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

Postdeveloped B

Hydrograph type	= SCS Runoff	Peak discharge	= 0.501 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 1,735 cuft
Drainage area	= 0.700 ac	Curve number	= 74
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.90 min
Total precip.	= 2.63 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

Postdeveloped C

Hydrograph type	= SCS Runoff	Peak discharge	= 1.679 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 4,552 cuft
Drainage area	= 1.570 ac	Curve number	= 76*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.63 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.110 x 98) + (1.460 x 74)] / 1.570

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Postdeveloped A Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.553 cfs
Storm frequency	= 2 yrs	Time to peak	= 19.57 hrs
Time interval	= 2 min	Hyd. volume	= 78,890 cuft
Inflow hyd. No.	= 6 - Postdeveloped A	Max. Elevation	= 706.73 ft
Reservoir name	= Proposed Retention Pond	Max. Storage	= 64,018 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Offsite Tributary to PR CB 34

Hydrograph type	= SCS Runoff	Peak discharge	= 2.505 cfs
Storm frequency	= 2 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 6,603 cuft
Drainage area	= 1.800 ac	Curve number	= 80*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.63 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.490 x 98) + (0.690 x 73) + (0.620 x 74)] / 1.800

32

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

Actual Release Rate Post A, Post B, Offsite Combin

Hydrograph type Storm frequency	= Combine = 2 yrs	Peak discharge Time to peak	= 3.181 cfs = 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 87,227 cuft
Inflow hyds.	= 7, 9, 10	Contrib. drain. area	= 2.500 ac

Q (cfs)

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	23.24	2	728	85,260				Predeveloped A
2	SCS Runoff	7.791	2	724	24,427				Predeveloped B
3	SCS Runoff	6.071	2	724	18,997				Predeveloped C
4	SCS Runoff	1.292	2	726	4,283				Predeveloped D
5	Combine	15.14	2	724	47,708	2, 3, 4			Pre B C D Combined
6	SCS Runoff	42.51	2	722	119,259				Postdeveloped A
7	SCS Runoff	0.823	2	726	2,704				Postdeveloped B
8	SCS Runoff	2.626	2	722	6,935				Postdeveloped C
9	Reservoir	0.703	2	1182	109,865	6	706.99	90,694	Postdeveloped A Routed
10	SCS Runoff	3.698	2	720	9,654				Offsite Tributary to PR CB 34
11	Combine	4.810	2	722	122,223	7, 9, 10			Actual Release Rate Post A, Post B,
E22	21073 Hydro.g	jpw			Return P	eriod: 5 Ye	ar	Wednesday	v, 11 / 23 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Predeveloped A

Hydrograph type :	= SCS Runoff	Peak discharge	= 23.24 cfs
Storm frequency :	= 5 yrs	Time to peak	= 12.13 hrs
Time interval :	= 2 min	Hyd. volume	= 85,260 cuft
Drainage area :	= 12.760 ac	Curve number	= 86*
Basin Slope :	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= TR55	Time of conc. (Tc)	= 25.70 min
Total precip.	= 3.24 in	Distribution	= Type II
Storm duration :	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(11.160 x 88) + (0.320 x 74) + (1.280 x 73)] / 12.760

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

Predeveloped B

Hydrograph type	= SCS Runoff	Peak discharge	= 7.791 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 24,427 cuft
Drainage area	= 3.310 ac	Curve number	= 88
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.30 min
Total precip.	= 3.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

36

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Predeveloped C

Hydrograph type	= SCS Runoff	Peak discharge	= 6.071 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 18,997 cuft
Drainage area	= 3.050 ac	Curve number	= 84*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 17.50 min
Total precip.	= 3.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(2.260 x 88) + (0.400 x 73) + (0.390 x 74)] / 3.050

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

Predeveloped D

Hydrograph type =	= SCS Runoff	Peak discharge	= 1.292 cfs
Storm frequency :	= 5 yrs	Time to peak	= 12.10 hrs
Time interval :	= 2 min	Hyd. volume	= 4,283 cuft
Drainage area	= 1.170 ac	Curve number	= 73*
Basin Slope :	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= TR55	Time of conc. (Tc)	= 16.90 min
Total precip.	= 3.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.610 x 73) + (0.560 x 74)] / 1.170

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

Pre B C D Combined

Hydrograph type	= Combine	Peak discharge	= 15.14 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 47,708 cuft
Inflow hyds.	= 2, 3, 4	Contrib. drain. area	= 7.530 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

Postdeveloped A

Hydrograph type	= SCS Runoff	Peak discharge	= 42.51 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 119,259 cuft
Drainage area	= 18.020 ac	Curve number	= 86*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 15.00 min
Total precip.	= 3.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(9.100 x 98) + (8.920 x 74)] / 18.020

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

Postdeveloped B

Hydrograph type	= SCS Runoff	Peak discharge	= 0.823 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 2,704 cuft
Drainage area	= 0.700 ac	Curve number	= 74
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.90 min
Total precip.	= 3.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

41

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

Postdeveloped C

Hydrograph type =	SCS Runoff	Peak discharge =	= 2.626 cfs
Storm frequency =	5 yrs	Time to peak =	= 12.03 hrs
Time interval =	2 min	Hyd. volume =	= 6,935 cuft
Drainage area =	1.570 ac	Curve number =	= 76*
Basin Slope =	0.0 %	Hydraulic length =	= 0 ft
Tc method =	User	Time of conc. (Tc)	= 10.00 min
Total precip. =	3.24 in	Distribution =	= Type II
Storm duration =	24 hrs	Shape factor =	= 484

* Composite (Area/CN) = [(0.110 x 98) + (1.460 x 74)] / 1.570

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Postdeveloped A Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.703 cfs
Storm frequency	= 5 yrs	Time to peak	= 19.70 hrs
Time interval	= 2 min	Hyd. volume	= 109,865 cuft
Inflow hyd. No.	= 6 - Postdeveloped A	Max. Elevation	= 706.99 ft
Reservoir name	= Proposed Retention Pond	Max. Storage	= 90,694 cuft

Storage Indication method used.

43

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Offsite Tributary to PR CB 34

Hydrograph type	= SCS Runoff	Peak discharge	= 3.698 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 9,654 cuft
Drainage area	= 1.800 ac	Curve number	= 80*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 3.24 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.490 x 98) + (0.690 x 73) + (0.620 x 74)] / 1.800

44

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

Actual Release Rate Post A, Post B, Offsite Combin

Hydrograph type	= Combine	Peak discharge	= 4.810 cfs
Storm frequency	= 5 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 122,223 cuft
Inflow hyds.	= 7, 9, 10	Contrib. drain. area	= 2.500 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	28.71	2	728	105,419				Predeveloped A
2	SCS Runoff	9.494	2	724	29,901				Predeveloped B
3	SCS Runoff	7.591	2	724	23,732				Predeveloped C
4	SCS Runoff	1.761	2	726	5,707				Predeveloped D
5	Combine	18.84	2	724	59,340	2, 3, 4			Pre B C D Combined
6	SCS Runoff	52.38	2	722	147,458				Postdeveloped A
7	SCS Runoff	1.111	2	726	3,578				Postdeveloped B
8	SCS Runoff	3.459	2	722	9,062				Postdeveloped C
9	Reservoir	0.813	2	1190	135,577	6	707.22	113,920	Postdeveloped A Routed
10	SCS Runoff	4.746	2	720	12,323				Offsite Tributary to PR CB 34
11	Combine	6.223	2	722	151,478	7, 9, 10			Actual Release Rate Post A, Post B,
E22	21073 Hydro.c	jpw		•	Return P	eriod: 10 Y	′ear	Wednesday	, 11 / 23 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Predeveloped A

Hydrograph type =	SCS Runoff	Peak discharge	= 28.71 cfs
Storm frequency =	= 10 yrs	Time to peak	= 12.13 hrs
Time interval =	= 2 min	Hyd. volume	= 105,419 cuft
Drainage area =	= 12.760 ac	Curve number	= 86*
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= TR55	Time of conc. (Tc)	= 25.70 min
Total precip. =	= 3.74 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(11.160 x 88) + (0.320 x 74) + (1.280 x 73)] / 12.760

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

Predeveloped B

Hydrograph type =	SCS Runoff	Peak discharge	= 9.494 cfs
Storm frequency =	= 10 yrs	Time to peak	= 12.07 hrs
Time interval =	= 2 min	Hyd. volume	= 29,901 cuft
Drainage area =	= 3.310 ac	Curve number	= 88
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= TR55	Time of conc. (Tc)	= 19.30 min
Total precip. =	= 3.74 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Predeveloped C

Hydrograph type	= SCS Runoff	Peak discharge	= 7.591 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 23,732 cuft
Drainage area	= 3.050 ac	Curve number	= 84*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 17.50 min
Total precip.	= 3.74 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(2.260 x 88) + (0.400 x 73) + (0.390 x 74)] / 3.050

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

Predeveloped D

Hydrograph type	= SCS Runoff	Peak discharge	= 1.761 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 5,707 cuft
Drainage area	= 1.170 ac	Curve number	= 73*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 16.90 min
Total precip.	= 3.74 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.610 x 73) + (0.560 x 74)] / 1.170

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

Pre B C D Combined

Hydrograph type Storm frequency	= Combine = 10 yrs	Peak discharge Time to peak	= 18.84 cfs = 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 59,340 cuft
Inflow hyds.	= 2, 3, 4	Contrib. drain. area	= 7.530 ac

51

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

Postdeveloped A

Hydrograph type =	SCS Runoff	Peak discharge	= 52.38 cfs
Storm frequency =	= 10 yrs	Time to peak	= 12.03 hrs
Time interval =	= 2 min	Hyd. volume	= 147,458 cuft
Drainage area =	= 18.020 ac	Curve number	= 86*
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= TR55	Time of conc. (Tc)	= 15.00 min
Total precip. =	= 3.74 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(9.100 x 98) + (8.920 x 74)] / 18.020

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

Postdeveloped B

Hydrograph type	= SCS Runoff	Peak discharge	= 1.111 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.10 hrs
Time interval	= 2 min	Hyd. volume	= 3,578 cuft
Drainage area	= 0.700 ac	Curve number	= 74
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.90 min
Total precip.	= 3.74 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

Postdeveloped C

Hydrograph type =	SCS Runoff	Peak discharge	= 3.459 cfs
Storm frequency =	= 10 yrs	Time to peak	= 12.03 hrs
Time interval =	= 2 min	Hyd. volume	= 9,062 cuft
Drainage area =	= 1.570 ac	Curve number	= 76*
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= User	Time of conc. (Tc)	= 10.00 min
Total precip. =	= 3.74 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.110 x 98) + (1.460 x 74)] / 1.570

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Postdeveloped A Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.813 cfs
Storm frequency	= 10 yrs	Time to peak	= 19.83 hrs
Time interval	= 2 min	Hyd. volume	= 135,577 cuft
Inflow hyd. No.	= 6 - Postdeveloped A	Max. Elevation	= 707.22 ft
Reservoir name	= Proposed Retention Pond	Max. Storage	= 113,920 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Offsite Tributary to PR CB 34

Hydrograph type =	SCS Runoff	Peak discharge	= 4.746 cfs
Storm frequency =	10 yrs	Time to peak	= 12.00 hrs
Time interval =	2 min	Hyd. volume	= 12,323 cuft
Drainage area =	1.800 ac	Curve number	= 80*
Basin Slope =	0.0 %	Hydraulic length	= 0 ft
Tc method =	User	Time of conc. (Tc)	= 10.00 min
Total precip. =	3.74 in	Distribution	= Type II
Storm duration =	24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.490 x 98) + (0.690 x 73) + (0.620 x 74)] / 1.800

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

Actual Release Rate Post A, Post B, Offsite Combin

Hydrograph type	= Combine	Peak discharge	= 6.223 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.03 hrs
Time interval	= 2 min	Hyd. volume	= 151,478 cuft
Inflow hyds.	= 7, 9, 10	Contrib. drain. area	= 2.500 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	36.47	2	728	134,415				Predeveloped A
2	SCS Runoff	11.89	2	724	37,726				Predeveloped B
3	SCS Runoff	9.760	2	724	30,587				Predeveloped C
4	SCS Runoff	2.467	2	724	7,859				Predeveloped D
5	Combine	24.12	2	724	76,172	2, 3, 4			Pre B C D Combined
6	SCS Runoff	66.36	2	722	188,016				Postdeveloped A
7	SCS Runoff	1.543	2	724	4,895				Postdeveloped B
8	SCS Runoff	4.704	2	720	12,236				Postdeveloped C
9	Reservoir	0.956	2	1204	171,598	6	707.56	147,718	Postdeveloped A Routed
10	SCS Runoff	6.265	2	720	16,242				Offsite Tributary to PR CB 34
11	Combine	8.221	2	722	192,735	7, 9, 10			Actual Release Rate Post A, Post B,
E22	21073 Hydro.g	gpw			Return P	eriod: 25 Y	′ear	Wednesday	/, 11 / 23 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Predeveloped A

Hydrograph type =	SCS Runoff	Peak discharge	= 36.47 cfs
Storm frequency =	25 yrs	Time to peak	= 12.13 hrs
Time interval =	2 min	Hyd. volume	= 134,415 cuft
Drainage area =	12.760 ac	Curve number	= 86*
Basin Slope =	0.0 %	Hydraulic length	= 0 ft
Tc method =	TR55	Time of conc. (Tc)	= 25.70 min
Total precip. =	4.44 in	Distribution	= Type II
Storm duration =	24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(11.160 x 88) + (0.320 x 74) + (1.280 x 73)] / 12.760

59

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

Predeveloped B

Hydrograph type	= SCS Runoff	Peak discharge	= 11.89 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 37,726 cuft
Drainage area	= 3.310 ac	Curve number	= 88
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.30 min
Total precip.	= 4.44 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

60

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Predeveloped C

Hydrograph type	= SCS Runoff	Peak discharge	= 9.760 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 30,587 cuft
Drainage area	= 3.050 ac	Curve number	= 84*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 17.50 min
Total precip.	= 4.44 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(2.260 x 88) + (0.400 x 73) + (0.390 x 74)] / 3.050

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

Predeveloped D

Hydrograph type =	= SCS Runoff	Peak discharge	= 2.467 cfs
Storm frequency :	= 25 yrs	Time to peak	= 12.07 hrs
Time interval :	= 2 min	Hyd. volume	= 7,859 cuft
Drainage area =	= 1.170 ac	Curve number	= 73*
Basin Slope :	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= TR55	Time of conc. (Tc)	= 16.90 min
Total precip.	= 4.44 in	Distribution	= Type II
Storm duration :	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.610 x 73) + (0.560 x 74)] / 1.170

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

Pre B C D Combined

= Combine = 25 yrs	Peak discharge Time to peak	= 24.12 cfs = 12.07 hrs
= 2 min	Hyd. volume	= 76,172 cuft
= 2, 3, 4	Contrib. drain. area	= 7.530 ac
	= Combine = 25 yrs = 2 min = 2, 3, 4	= CombinePeak discharge= 25 yrsTime to peak= 2 minHyd. volume= 2, 3, 4Contrib. drain. area

63

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

Postdeveloped A

Hydrograph type =	SCS Runoff	Peak discharge	= 66.36 cfs
Storm frequency =	= 25 yrs	Time to peak	= 12.03 hrs
Time interval =	= 2 min	Hyd. volume	= 188,016 cuft
Drainage area =	= 18.020 ac	Curve number	= 86*
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= TR55	Time of conc. (Tc)	= 15.00 min
Total precip. =	= 4.44 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(9.100 x 98) + (8.920 x 74)] / 18.020

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

Postdeveloped B

Hydrograph type	= SCS Runoff	Peak discharge	= 1.543 cfs
Storm frequency	= 25 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 4,895 cuft
Drainage area	= 0.700 ac	Curve number	= 74
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.90 min
Total precip.	= 4.44 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

65

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

Postdeveloped C

Hydrograph type =	SCS Runoff	Peak discharge	= 4.704 cfs
Storm frequency =	= 25 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 12,236 cuft
Drainage area =	= 1.570 ac	Curve number	= 76*
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 4.44 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.110 x 98) + (1.460 x 74)] / 1.570

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Postdeveloped A Routed

Hydrograph type	= Reservoir	Peak discharge	= 0.956 cfs
Storm frequency	= 25 yrs	Time to peak	= 20.07 hrs
Time interval	= 2 min	Hyd. volume	= 171,598 cuft
Inflow hyd. No.	= 6 - Postdeveloped A	Max. Elevation	= 707.56 ft
Reservoir name	= Proposed Retention Pond	Max. Storage	= 147,718 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Offsite Tributary to PR CB 34

Hydrograph type =	SCS Runoff	Peak discharge	= 6.265 cfs
Storm frequency =	25 yrs	Time to peak	= 12.00 hrs
Time interval =	2 min	Hyd. volume	= 16,242 cuft
Drainage area =	1.800 ac	Curve number	= 80*
Basin Slope =	0.0 %	Hydraulic length	= 0 ft
Tc method =	User	Time of conc. (Tc)	= 10.00 min
Total precip. =	4.44 in	Distribution	= Type II
Storm duration =	24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.490 x 98) + (0.690 x 73) + (0.620 x 74)] / 1.800

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

Actual Release Rate Post A, Post B, Offsite Combin

Hydrograph type =	Combine	Peak discharge	= 8.221 cfs
Storm frequency =	= 25 yrs	Time to peak	= 12.03 hrs
Time interval =	= 2 min	Hyd. volume	= 192,735 cuft
Inflow hyds. =	= 7, 9, 10	Contrib. drain. area	= 2.500 ac

69

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	42.95	2	728	158,930				Predeveloped A
2	SCS Runoff	13.88	2	724	44,312				Predeveloped B
3	SCS Runoff	11.58	2	724	36,411				Predeveloped C
4	SCS Runoff	3.091	2	724	9,752				Predeveloped D
5	Combine	28.55	2	724	90,475	2, 3, 4			Pre B C D Combined
6	SCS Runoff	78.00	2	722	222,307				Postdeveloped A
7	SCS Runoff	1.922	2	724	6,048				Postdeveloped B
8	SCS Runoff	5.783	2	720	14,999				Postdeveloped C
9	Reservoir	1.064	2	1224	201,119	6	707.85	176,629	Postdeveloped A Routed
10	SCS Runoff	7.553	2	720	19,610				Offsite Tributary to PR CB 34
11	Combine	9.924	2	722	226,778	7, 9, 10			Actual Release Rate Post A, Post B,
E22	21073 Hydro.g	Jpw			Return P	eriod: 50 Y	/ /ear	Wednesday	v, 11 / 23 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Predeveloped A

Hydrograph type =	SCS Runoff	Peak discharge	= 42.95 cfs
Storm frequency =	50 yrs	Time to peak	= 12.13 hrs
Time interval =	2 min	Hyd. volume	= 158,930 cuft
Drainage area =	12.760 ac	Curve number	= 86*
Basin Slope =	0.0 %	Hydraulic length	= 0 ft
Tc method =	TR55	Time of conc. (Tc)	= 25.70 min
Total precip. =	5.02 in	Distribution	= Type II
Storm duration =	24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(11.160 x 88) + (0.320 x 74) + (1.280 x 73)] / 12.760

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

Predeveloped B

Hydrograph type	= SCS Runoff	Peak discharge	= 13.88 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 44,312 cuft
Drainage area	= 3.310 ac	Curve number	= 88
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.30 min
Total precip.	= 5.02 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

72

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Predeveloped C

Hydrograph type	= SCS Runoff	Peak discharge	= 11.58 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 36,411 cuft
Drainage area	= 3.050 ac	Curve number	= 84*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 17.50 min
Total precip.	= 5.02 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(2.260 x 88) + (0.400 x 73) + (0.390 x 74)] / 3.050

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

Predeveloped D

Hydrograph type =	SCS Runoff	Peak discharge	= 3.091 cfs
Storm frequency =	= 50 yrs	Time to peak	= 12.07 hrs
Time interval =	= 2 min	Hyd. volume	= 9,752 cuft
Drainage area =	= 1.170 ac	Curve number	= 73*
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= TR55	Time of conc. (Tc)	= 16.90 min
Total precip. =	= 5.02 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.610 x 73) + (0.560 x 74)] / 1.170

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

Pre B C D Combined

Hydrograph type Storm frequency	= Combine = 50 yrs	Peak discharge Time to peak	= 28.55 cfs = 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 90,475 cuft
Inflow hyds.	= 2, 3, 4	Contrib. drain. area	= 7.530 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

Postdeveloped A

Hydrograph type =	SCS Runoff	Peak discharge	= 78.00 cfs
Storm frequency =	= 50 yrs	Time to peak	= 12.03 hrs
Time interval =	= 2 min	Hyd. volume	= 222,307 cuft
Drainage area =	= 18.020 ac	Curve number	= 86*
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= TR55	Time of conc. (Tc)	= 15.00 min
Total precip. =	= 5.02 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(9.100 x 98) + (8.920 x 74)] / 18.020

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

Postdeveloped B

Hydrograph type	= SCS Runoff	Peak discharge	= 1.922 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 6,048 cuft
Drainage area	= 0.700 ac	Curve number	= 74
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.90 min
Total precip.	= 5.02 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

Postdeveloped C

Hydrograph type	= SCS Runoff	Peak discharge	= 5.783 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 14,999 cuft
Drainage area	= 1.570 ac	Curve number	= 76*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 5.02 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.110 x 98) + (1.460 x 74)] / 1.570

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Postdeveloped A Routed

Hydrograph type	= Reservoir	Peak discharge	= 1.064 cfs
Storm frequency	= 50 yrs	Time to peak	= 20.40 hrs
Time interval	= 2 min	Hyd. volume	= 201,119 cuft
Inflow hyd. No.	= 6 - Postdeveloped A	Max. Elevation	= 707.85 ft
Reservoir name	= Proposed Retention Pond	Max. Storage	= 176,629 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Offsite Tributary to PR CB 34

Hydrograph type	= SCS Runoff	Peak discharge	= 7.553 cfs
Storm frequency	= 50 yrs	Time to peak	= 12.00 hrs
Time interval	= 2 min	Hyd. volume	= 19,610 cuft
Drainage area	= 1.800 ac	Curve number	= 80*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 5.02 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.490 x 98) + (0.690 x 73) + (0.620 x 74)] / 1.800

80

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

Actual Release Rate Post A, Post B, Offsite Combin

Hydrograph type =	Combine	Peak discharge	= 9.924 cfs
Storm frequency =	50 yrs	Time to peak	= 12.03 hrs
Time interval =	2 min	Hyd. volume	= 226,778 cuft
Inflow hyds. =	7, 9, 10	Contrib. drain. area	= 2.500 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

eak Time ow interval fs) (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
49.77 2	728	185,061				Predeveloped A
15.97 2	724	51,309				Predeveloped B
13.50 2	724	42,641				Predeveloped C
3.768 2	724	11,826				Predeveloped D
33.24 2	724	105,776	2, 3, 4			Pre B C D Combined
90.26 2	722	258,859				Postdeveloped A
2.333 2	724	7,309				Postdeveloped B
6.944 2	720	18,003				Postdeveloped C
1.622 2	1106	233,650	6	708.10	202,026	Postdeveloped A Routed
3.925 2	720	23,241				Offsite Tributary to PR CB 34
11.73 2	722	264,200	7, 9, 10			Actual Release Rate Post A, Post B,

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Predeveloped A

Hydrograph type =	SCS Runoff	Peak discharge	= 49.77 cfs
Storm frequency =	= 100 yrs	Time to peak	= 12.13 hrs
Time interval =	= 2 min	Hyd. volume	= 185,061 cuft
Drainage area =	= 12.760 ac	Curve number	= 86*
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= TR55	Time of conc. (Tc)	= 25.70 min
Total precip. =	= 5.63 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(11.160 x 88) + (0.320 x 74) + (1.280 x 73)] / 12.760

83

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

Predeveloped B

Hydrograph type	= SCS Runoff	Peak discharge	= 15.97 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 51,309 cuft
Drainage area	= 3.310 ac	Curve number	= 88
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.30 min
Total precip.	= 5.63 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

84

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Predeveloped C

Hydrograph type	= SCS Runoff	Peak discharge	= 13.50 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 42,641 cuft
Drainage area	= 3.050 ac	Curve number	= 84*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 17.50 min
Total precip.	= 5.63 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(2.260 x 88) + (0.400 x 73) + (0.390 x 74)] / 3.050

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

Predeveloped D

Hydrograph type	= SCS Runoff	Peak discharge	= 3.768 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 11,826 cuft
Drainage area	= 1.170 ac	Curve number	= 73*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 16.90 min
Total precip.	= 5.63 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.610 x 73) + (0.560 x 74)] / 1.170

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

Pre B C D Combined

Hydrograph type Storm frequency	= Combine = 100 yrs	Peak discharge Time to peak	= 33.24 cfs = 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 105,776 cuft
Inflow hyds.	= 2, 3, 4	Contrib. drain. area	= 7.530 ac

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

Postdeveloped A

Hydrograph type =	SCS Runoff	Peak discharge	= 90.26 cfs
Storm frequency =	= 100 yrs	Time to peak	= 12.03 hrs
Time interval =	= 2 min	Hyd. volume	= 258,859 cuft
Drainage area =	= 18.020 ac	Curve number	= 86*
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= TR55	Time of conc. (Tc)	= 15.00 min
Total precip. =	= 5.63 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(9.100 x 98) + (8.920 x 74)] / 18.020

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

Postdeveloped B

Hydrograph type	= SCS Runoff	Peak discharge	= 2.333 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.07 hrs
Time interval	= 2 min	Hyd. volume	= 7,309 cuft
Drainage area	= 0.700 ac	Curve number	= 74
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 19.90 min
Total precip.	= 5.63 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

89

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

Postdeveloped C

Hydrograph type =	SCS Runoff	Peak discharge	= 6.944 cfs
Storm frequency =	100 yrs	Time to peak	= 12.00 hrs
Time interval =	2 min	Hyd. volume	= 18,003 cuft
Drainage area =	1.570 ac	Curve number	= 76*
Basin Slope =	0.0 %	Hydraulic length	= 0 ft
Tc method =	User	Time of conc. (Tc)	= 10.00 min
Total precip. =	5.63 in	Distribution	= Type II
Storm duration =	24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.110 x 98) + (1.460 x 74)] / 1.570

90

Wednesday, 11 / 23 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Postdeveloped A Routed

Hydrograph type	= Reservoir	Peak discharge	= 1.622 cfs
Storm frequency	= 100 yrs	Time to peak	= 18.43 hrs
Time interval	= 2 min	Hyd. volume	= 233,650 cuft
Inflow hyd. No.	= 6 - Postdeveloped A	Max. Elevation	= 708.10 ft
Reservoir name	= Proposed Retention Pond	Max. Storage	= 202,026 cuft

Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Offsite Tributary to PR CB 34

Hydrograph type =	SCS Runoff	Peak discharge	= 8.925 cfs
Storm frequency =	= 100 yrs	Time to peak	= 12.00 hrs
Time interval =	= 2 min	Hyd. volume	= 23,241 cuft
Drainage area =	= 1.800 ac	Curve number	= 80*
Basin Slope =	= 0.0 %	Hydraulic length	= 0 ft
Tc method =	= User	Time of conc. (Tc)	= 10.00 min
Total precip. =	= 5.63 in	Distribution	= Type II
Storm duration =	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(0.490 x 98) + (0.690 x 73) + (0.620 x 74)] / 1.800

Wednesday, 11 / 23 / 2022

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

Actual Release Rate Post A, Post B, Offsite Combin

Hydrograph type	= Combine	Peak discharge	= 11.73 cfs
Time interval	$= 2 \min$	Hyd. volume	= 264,200 cuft
Inflow hyds.	= 7, 9, 10	Contrib. drain. area	= 2.500 ac

Wednesday, 11 / 23 / 2022

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Return	Intensity-Du	Intensity-Duration-Frequency Equation Coefficients (FHA)							
(Yrs)	В	D	E	(N/A)					
1	0.0000	0.0000	0.0000						
2	69.8703	13.1000	0.8658						
3	0.0000	0.0000	0.0000						
5	79.2597	14.6000	0.8369						
10	88.2351	15.5000	0.8279						
25	102.6072	16.5000	0.8217						
50	114.8193	17.2000	0.8199						
100	127.1596	17.8000	0.8186						

File name: Franklin Co.IDF

Intensity = B / (Tc + D)^E

Intensity Values (in/hr)											
5 min	10	15	20	25	30	35	40	45	50	55	60
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5.69	4.61	3.89	3.38	2.99	2.69	2.44	2.24	2.07	1.93	1.81	1.70
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6.57	5.43	4.65	4.08	3.65	3.30	3.02	2.79	2.59	2.42	2.27	2.15
7.24	6.04	5.21	4.59	4.12	3.74	3.43	3.17	2.95	2.77	2.60	2.46
8.25	6.95	6.03	5.34	4.80	4.38	4.02	3.73	3.48	3.26	3.07	2.91
9.04	7.65	6.66	5.92	5.34	4.87	4.49	4.16	3.88	3.65	3.44	3.25
9.83	8.36	7.30	6.50	5.87	5.36	4.94	4.59	4.29	4.03	3.80	3.60
	5 min 0.00 5.69 0.00 6.57 7.24 8.25 9.04 9.83	5 min 10 0.00 0.00 5.69 4.61 0.00 0.00 6.57 5.43 7.24 6.04 8.25 6.95 9.04 7.65 9.83 8.36	5 min 10 15 0.00 0.00 0.00 5.69 4.61 3.89 0.00 0.00 0.00 6.57 5.43 4.65 7.24 6.04 5.21 8.25 6.95 6.03 9.04 7.65 6.66 9.83 8.36 7.30	5 min 10 15 20 0.00 0.00 0.00 0.00 5.69 4.61 3.89 3.38 0.00 0.00 0.00 0.00 6.57 5.43 4.65 4.08 7.24 6.04 5.21 4.59 8.25 6.95 6.03 5.34 9.04 7.65 6.66 5.92 9.83 8.36 7.30 6.50	5 min 10 15 20 25 0.00 0.00 0.00 0.00 0.00 5.69 4.61 3.89 3.38 2.99 0.00 0.00 0.00 0.00 0.00 6.57 5.43 4.65 4.08 3.65 7.24 6.04 5.21 4.59 4.12 8.25 6.95 6.03 5.34 4.80 9.04 7.65 6.66 5.92 5.34 9.83 8.36 7.30 6.50 5.87	Intensity Values 5 min 10 15 20 25 30 0.00 0.00 0.00 0.00 0.00 0.00 5.69 4.61 3.89 3.38 2.99 2.69 0.00 0.00 0.00 0.00 0.00 0.00 6.57 5.43 4.65 4.08 3.65 3.30 7.24 6.04 5.21 4.59 4.12 3.74 8.25 6.95 6.03 5.34 4.80 4.38 9.04 7.65 6.66 5.92 5.34 4.87 9.83 8.36 7.30 6.50 5.87 5.36	Intensity Values (in/hr) 5 min 10 15 20 25 30 35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.69 4.61 3.89 3.38 2.99 2.69 2.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.57 5.43 4.65 4.08 3.65 3.30 3.02 7.24 6.04 5.21 4.59 4.12 3.74 3.43 8.25 6.95 6.03 5.34 4.80 4.38 4.02 9.04 7.65 6.66 5.92 5.34 4.87 4.49 9.83 8.36 7.30 6.50 5.87 5.36 4.94	Intensity Values (in/hr) 5 min 10 15 20 25 30 35 40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.69 4.61 3.89 3.38 2.99 2.69 2.44 2.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.57 5.43 4.65 4.08 3.65 3.30 3.02 2.79 7.24 6.04 5.21 4.59 4.12 3.74 3.43 3.17 8.25 6.95 6.03 5.34 4.80 4.38 4.02 3.73 9.04 7.65 6.66 5.92 5.34 4.87 4.49 4.16 9.83 8.36 7.30 6.50 5.87 5.36 4.94 4.59	Intensity Values (in/hr)5 min10152025303540450.000.000.000.000.000.000.000.000.005.694.613.893.382.992.692.442.242.070.000.000.000.000.000.000.000.000.006.575.434.654.083.653.303.022.792.597.246.045.214.594.123.743.433.172.958.256.956.035.344.804.384.023.733.489.047.656.665.925.344.874.494.163.889.838.367.306.505.875.364.944.594.29	Intensity Values (in/hr)5 min1015202530354045500.000.000.000.000.000.000.000.000.000.005.694.613.893.382.992.692.442.242.071.930.000.000.000.000.000.000.000.000.000.006.575.434.654.083.653.303.022.792.592.427.246.045.214.594.123.743.433.172.952.778.256.956.035.344.804.384.023.733.483.269.047.656.665.925.344.874.494.163.883.659.838.367.306.505.875.364.944.594.294.03	Intensity Values (in/hr)5 min101520253035404550550.000.000.000.000.000.000.000.000.000.000.005.694.613.893.382.992.692.442.242.071.931.810.000.000.000.000.000.000.000.000.000.006.575.434.654.083.653.303.022.792.592.422.277.246.045.214.594.123.743.433.172.952.772.608.256.956.035.344.804.384.023.733.483.263.079.047.656.665.925.344.874.494.163.883.653.449.838.367.306.505.875.364.944.594.294.033.80

Tc = time in minutes. Values may exceed 60.

		Rainfall Precipitation Table (in)								
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr		
SCS 24-hour	2.20	2.63	0.00	3.24	3.74	4.44	5.02	5.63		
SCS 6-Hr	1.61	1.94	0.00	2.42	2.82	3.40	3.89	4.42		
Huff-1st	0.00	1.55	0.00	2.75	4.00	5.38	6.50	8.00		
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Custom	0.00	1.75	0.00	2.80	3.90	5.25	6.00	7.10		

Precip. file name: O:\Support\Autocad\Drainage SCS Tables\Columbus.pcp

94