200 East Station Street, Ashville, Ohio 43103 Office: (740)-983-6367 FAX: (740)-983-4703

MAINTENANCE OF TRAFFIC (M.O.T.) REQUEST

Notes:

1. Requests for partial road closure/lane restrictions must be submitted no less than five (5) working days in advance of the commencement of approved road closure activity.
2. Requests for full road closure must be submitted no less than two (2) weeks in advance of the commencement of approved road closure activity.
3. A Right-of-way Permit must also be submitted for approval for any work within public street right-of-way.
4. Work within Township, County, or State of Ohio right-of-way may also be subject to other agency permits and approval.

Rev. 11/14/08

Project Name: $1 / 524$ Nortolk Southern	
contractor: Sub, Safety Services + Sup	
Address: 23032 Ro Q FF.Jenn	inas OH 45844
submitted By: Andrea Janka	Email Address: andrea osss traffic.
Business Phone: 419 - 453-3160	Cell Phone: 419 - $015-9923$
Location \& Description of Work: RR tracks on Around 245 Cromley St.	ansti in Ashville, OHt

Date Work to Start: $4 / 11 / 22$ Date to be Completed: $4 / 15 / 22$ Work Hours:

Detailed Description of Proposed Maintenance of Traffic Plan: (Attach sketch as required)

Approval of this application does not constitute permission for the applicant to commence any activity within the road right-ofway until appropriate coordination of the described work is made with the designated village representative listed below. Any alterations or changes to the approved MOT plans are subject to village review and approval prior to being implemented.
Approval Notes:

Village Representative:				Phone:	
Required MOT Details:	\square MOT C-12	\square MOT C-18	\square MOT C-28	\square MOT C-ODOT	\square MOT Other

Typical Applications of Traffic Control Devices
 for
 Stationary Operations
 On the Shoulder

Typical Application 4
C-12

Typical Applications of Traffic Control Devices for
 Stationary Operations in One Lane

Figure 6H-10. Lane Closure on Two-Lane Road Using Flaggers (TA-10)

Notes:

1. See Table 7.5 for taper lengths.
2. Use the same warning signs on the opposite approach.
3. Space the cones at 50^{\prime} max. on tangent.

Note: The buffer space should be extenced so that the two-svay traffic taper is placed before a horizontal (or crest vertical) curve to provice acequate sight cistance for the flagger and a quetue of stopped vehicles

Typical Application 10
C-18

Typical Applications of Traffic Control Devices for

Closed Street and Detour

Figure 6H-20. Detour for Closed Street (TA-20)

Typical Application 20
C-28

		LEN		-2 Ratio	ANE				
Prevailing Highway Speed (MPH)		Total Length of DECELERAIION tane, Including Taper, Feal: Speed of Exit (MPH)							
	15	20	25	30	35	40	45	50	55
40	325	300	275	250	200	...		\ldots	. .
50	425	400	375	350	335	275
60	500	500	475	450	425	400	325	300	.
65	550	550	525	500	475	450	375	325	.
70	600	575	550	550	525	500	425	400	350
75	650	625	600	600	575	525	475	450	400
80	700	675	650	650	600	575	525	475	450
		TABLE 7-3 LENGTH OF ACCELERATION LINE							
Spood of Entrance (MPH)		Total longth of ACCELERATION Lane, Including Taper, Feet: Powailing Highway Speed (MPH)							
			40		50		60		70
20			325		700		1125		1550
30			225		600		1000		1400
40			...		400		800		1225
50			. \cdot		\cdots		400		825
55		. .			\cdots		\cdots		575

NOTE: Uniform 50:1 tapers are recommended where lengths of acceleraion lames exceed 1300 feet, or where design speeds exceed 70 MPH, or elsewhera if appropriate and space permiss.
(SOURCE: American Association of State Highway Officials, A Policy on Geometric Design of Rural Highsuays, 1(htis).

7F-15 Curve Advisory Speeds

The advisory speed for curves on temprany roadways with standard superelevation are shown in Table 7-4.

TABLE 7.4
ADVISORY SPEED FOR GIVEN RADIUS
Curve

Raclius, Feet	50	90	150	230	310	430	550	690	
Advisory Speed of Curve,									
MPH	15	20	25	30	35	40	45	50	

7F-16 Multiple Lane Closings

Where two or more lanes of a multilane highway are to be closed, traffic should not be forced to vacate more than a single lane at any one point, i.e., the points of closures of each lane should be separated in distance to prevent the compounding of merging maneuvers. This distance should be on the order of 1500 feet. Addi-
tional Consrauction Approach Warning or other* appropriate signs should be placed between the points of closure. A continuous taper actoss two or mo:e lanes in permissible when traffic already movirg in a single line is required to shift lanes. (See Figure C-20).

7F-17 Transition Taper Length

The single most important element, within the systeri of traffic control devices commonly used in construction or maintenance areas (where a reduction in pavement width is involved), is the taper that is provided for the channelization. An inadequate taper will most always produce undesirable traffic operations with resulting congestion and possibly accidents through the area.
A minimum desirable taper is expressed by the formula $L=$ WS for freeways, expressways and all other roadways having a posted speed of 45 m.p.h. or greater. The formula $L=W S^{\mathbf{2}} / 60$ should be used to compute taper length on urban, residential, and other streets where the posted
speeds are $40 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. or less. Under both formulae, L equals the taper length in feet, W the width of the offset in feet, and S the off-peak 85 perventile speed in miles per hour. The minimum taper length shall be 100 feet in urban areas and 200 feet in rural areas.
The minimum desirable length indicatec above applies to roadway conditions of relatively flat grades and straight alignment. Adjustments may become necessary to provide adequate sight distance on the approach to the channelization. Similarly, the proximity of interchange ramps, crossroads, etc., to the work site may dietate the need for adjustments. In general, better traffie operations will result when the adjustmerts consist of increasing the length of the taper rather than reducing the length (below the minimum desirable recommened above). See Figure C-23.

The length and shape of a taper should encourage drivers to utilize it when shifting from one lane to an adjacent lane. Its length is based on the distance actually utilized by drivers in moving over laterally one lane and also on the distance required for drivers to follow a reversecurve path in accordance with known comfortable speed curvature relations. Under relatively normal conditions of speeds and volumes, and where adequate advance warning of a lane obstruction has been provided, the taper length listed in Table $7-5$ should be sufficient to permit traffic to shift safely from one lane to another. Where speed or volume are high this length should be substantially increased for the same type facility. Where traffic is stopped or consideratuly slowed in advance of the transition, as by flagmen, and where the lane change does not involve a merging of traffic streams, the taper may be very short, just long enough for traffic to turn comfortably into the appropriate lane.
(See revision shent)

7F-18 Temporary Channelization Devices

Cones, drums, and barricades may be used to funnel traffic into the appropriate lane. Cones
may be used under urban conditions and on minor state routes or for less than one day setups. Drums should he used on freeway type facilities, particularly for over night set-ups. Type II Barricades may be used for tapers. Barricades, particalarly Types I and II, may be used adjacent to the work area to prevent workers from ingdvertently straying into the travel path. Drums with attached guardrail may be used for tapers shifting traffic from one lane to another. Vertical panels are excellent daylight delineators of travel paths where space is at a premium. Portable flasher supports may be used if the flashers are operated only in the steady mode. The tapers shall be those shown in Table 7-5. See Fig. C-8 and C-30.
(See rovision theel)

7G LIGITTING DEVICES

7G-1 Functions

Construction and maintenance activities often create conditions on or near the traveled way that are particularly hazardous at night when the driver's ahility to see is sharply reduced from daytime conditions. It is often desirable and necessary to supplement the reflectorized signs, barriers and chamelizing devices with lighting devices that are described in the following paragraphs.

Three types of electric lights are commonly used: floodlights, stendy burning lights, and flashing lights.

7G-2 Floodlights

On construction projects, floodlights have a limited, but important application. Sometimes large construction contracts are prosecuted on a double shift basis, particularly earth moving setivities. Oftentimes, the earth moving involves a haul road crossing a public highway, at which point a flagman station is generally set up. In order to assure the safest possible conditions at this type of location, it is advisable to supplement
table 7.5
taper lengths (l)
Minimum Number of Cones, Drums, or Barricades Required

Prevailing	(L)		(l)		
Speed	10 Ft.	No. of	12 Ft.	No. of	
MPH	Lane	C. D or B	lane	C, D or B	
25	100	4	125	5	
35	200	8	250	9	
45	450	11	540	13	
55	550	11	660	13	
65	650	11	780	13	
			(See revision sheel)		

GENERAL NOTES

1. It is intended that inls orewing de used for Preptment of drop-offs that dovalep dering construction aporations, and thot are not otherwlso provided for in the constructian plons. The suggostol prealmonts ora infended for high volume projects shaf wiff last of legsf seven days and hove an acfive work 20 ne 1 mide $[3.6 \mathrm{kmj}$ of less in lenglo. For guldance on the use of this sheet, seb l\&D Hanuol Voluma Qne, Section 500 . Whero the pions do nof pravida spacific flams for fabor, aquipment, or moteriass to implament the drop-aff traatments specificd herean. they shalt be included for poyment in the lump sum bid for Item 614be racudad ror payo
Mainfaining Jfoffic.
2. While the neod for certain adwisory signing is noted heraon. it is not intended that this bs indicative of all signing thaf may be raquirad to dovise or born motarists, ond all requirements of the ahio vonvol of Uniform Trofific confirol Dovises fouutcos must be fulfisled.
3. in urbon or atherwise baguily developad areas where pedisifions andior sicyafists moy oe present in significant numbers, ajdfifonat sigoning and orotoctivo moasures other than phose shown herteon may be required.
4. The drop-off treainant salacisd for use of any given lacation shall be as appropriata for tho arovailing conditions of the sita.
5. Khere constale dorifor is spagifiad, if shall be in occordance with 560 RM-4.2 and flan 622.
6. When drums aro specified for a drop-off candilian, o minimum number of four offims shafl be used. Sodaing minimum number of four ufums shaf be used. Spocing
shall be as jndicatag in iho plens or os speciflod in shall be as
ine outifco.
7. When OW-151 (LOW Shauldorl signs or OW-155 (Shousder Orap-off) signs or aW-ifi (Uneren Lanesi signs are required. thay shafl be placed 750^{\prime} (230 ass in adyance of the condition, on alt intersacting enirance ramps within the llalts of fing condition and inmedfatafy beyond ofl intar sacting rogiways within the limits of tho eordition. when the drap-ofi condifion oxtends more than 0.5 mila $[800 \mathrm{ml}$, odditionot signs shousd be eracted as intorvals of 1.0 mile [1600 m] or less.
8. For focorions, slen os of romps, lono anifis, lane closures, ofe., where traffic is raquired to negoliole a difforonca claygilon befweer porsments. 0 3:1 sfope freofment simflar to tho Oplionol Hedge Traoimant shall be pravided.
9. Poriabie concreta bosrief shall de placed on the same level as the traffic surfore and sholl not ancroach on lone as idthes designalod es the minlmum raquirad for irotific use. Whers drums are usad, ond fhols presence would reduce troveled lane wicins to lass than 10° [3.0 m\}, druars may be placed on the opposize laval from thot of ifoftic providad lhe droporf depth dass not excead 5^{*} [125] ond aporovol is oranlad by the Project Enginear.
10. Povement Repolre for similor works:

- Lengths graofer tran EO' (i8 m) - utilize oppropriate tragtment from Condition \int.
b. Lengits of 60' [je m] or fess - rapairs shall be effegted in accordanca wift CdS 255.08. Orums mar be usad os o sapartar odjacont ta foe sraveled lone.

OPTICNAL WEDGE TREATHENT
 IWILLING OR RESURFACFHGS

f. This tragiment may ba usad when permitted for condition 1 onfr.
2. Oll-171 sign requifod.

Travolad lane Trawolad laneme

